# Proton Hopping in Water (The Grotthuss Mechanism)

Proton Hopping is the process of diffusion of protons (H⁺ ions) through the network of hydrogen-bonded water molecules in the liquid water. Proton hopping is also called as Grotthuss mechanism, named after the discoverer Theodor Grotthuss. The net result of proton hopping is the fast movement of H⁺ ions in water than any other dissolved cations such as Na⁺ or K⁺. Let’s see how proton hopping occurs in water.

Water has a slight tendency of ionization. The H2O molecules can ionize into H⁺ and OH¯ ions as in the equation (1).

The ionization reaction of water can be described by its equilibrium constant. The equilibrium constant (Keq) of the ionization of water at 25°C is calculated as 1.8 X 10¯16 M. The equilibrium constant and the concentration of H⁺ and OH¯ ions formed as a result of the ionization of H2O molecules are responsible for the pH of water.

# Henderson–Hasselbalch Equation How to Derive Henderson Hasselbalch Equation?

Henderson-Hasselbalch equation is a simple expression which relates the pH, pKa and the buffer action of a weak acid and its conjugate base. The Henderson-Hasselbalch equation also describes the characteristic shape of the titration curve of any weak acid such as acetic acid, phosphoric acid, or any amino acid. The titration curve of a weak acid helps to determine the buffering pH which is exhibited around the pKa of that acid. For example, in the case of acetate buffer, the pKa is 4.76. This is the best buffering pH of acetic acid. Besides, at this pH the acetic acid (CH3COOH) and acetate ions (CH3COO¯) will be at equimolar concentration in the solution. This equimolar solution of a weak acid and its conjugate base will resist the change in pH by donating or taking up the H⁺ ions. (pH is the negative logarithm of hydrogen ion concentration in a medium.The pKa is the negative logarithm of Ka. The Ka is the dissociation constant (similar to the equilibrium constant) for the ionization reaction of an acid.)

In the present post, we will see the derivation of Henderson-Hasselbalch equation from the ionization reaction of a weak acid. We also discuss the significance of Henderson-Hasselbalch equation.

# Hydrogen Bond: Formation, Structure and Properties of Hydrogen Bonds in Water

The life was originated and started its evolution in water. Without water, life could not have existed on this planet. The properties of water, both physical and chemical, enabled water as the ‘solvent of life’. The water possesses some unusual physical and chemical properties. These ‘unusual properties’ of water makes water as the solvent of life. The unusual properties of water are due to presence of Hydrogen Bonds in them. The present post describes the method of formation of hydrogen bonds in water its properties.

## How Hydrogen Bond is formed in Water?

Ø  Water is a polar solvent.

Ø  The polarity of a molecule due to uneven of distribution charges in them.

Ø  Uneven charge distribution causes a dipole formation.

Ø  One part (pole) of water molecule is slightly positive.

Ø  The other part (pole) of water molecule is slightly negative.

Ø  This type of difference in the distribution of positive and negative charges in a molecule is due to the huge difference in the electronegativity of the atoms in them.

Ø  Electronegativity is the ability of an atom to attract bonded pair of electrons towards its nucleus.