PLUS TWO BOTANY NOTES

CHAPTER-2: SEXUAL REPRODUCTION IN FLOWERING PLANTS *Part-3*: Post-Fertilization, Embryo Development and Seed

<<< Part-2

Part-1>>>

Flowering plants (Angiosperms) show sexual reproduction. In the previous post (part -2) we discussed about Pollination, Fertilization and Double Fertilization. This post is the Part three of Plus Two Botany Notes Sexual Reproduction in Flowering Plants. Here we briefly discuss the post-fertilization processes in plants such as development of endosperm, development of embryo, structure of dicot and monocot embryo and structure of seeds of dicots and monocots.

Development of Endosperm

- * Primary Endosperm Nucleus (PEN) develops into Endosperm.
- * Stages of endosperm development:
 - 1) Free nuclear endosperm
 - * Repeated nuclear divisions of PEN produce free nuclei.
 - * Endosperm in this stage is called Free Nuclear Endosperm.
 - * Eg. Tender Coconut water in the centre.

2) Cellular endosperm

- * Free nuclei in the endosperm develops cell wall.
- * Endosperm in this stage is called Cellular Endosperm.
- * Eg. White coconut kernel.

Functions of Endosperm

- 1) To provide nourishment to the developing embryo.
- 2) Endosperm tissue consists of reserve food materials.

Development of Embryo

- * Embryo develops from the zygote by cell division.
- * Stages of development of embryo:
 - 1) Zygote
 - 2) Pro-embryo
 - 3) Globular embryo
 - 4) Heart shaped embryo
 - 5) Mature embryo

Structure of Embryo

Parts of a mature embryo:

- 1) Embryonal axis
 - i. Plumule
 - ii. Radicle
- 2) Cotyledons

STRUCTURE OF DICOT EMBRYO

A mature dicot embryo consists of:

- 1) Embryonal Axis
- 2) Two Cotyledons

(1). Embryonal Axis

- Embryonal axis has two ends Epicotyl and Hypocotyl
- Epicotyle
 - * The part of embryonal axis above the level of cotyledons.
 - * Epicotyle ends in plumule or stem tip.

- * Plumule develops into shoot system.
- Hypocotyl
 - * The part of embryonal axis below the level of cotyledons
 - * Hypocotyl ends in radicle or root tip.
 - * Radicle develops into root system.
 - * Radicle is covered with root cap or calyptra.
 - * Root cap protects the root tip and help in downward growth of root through the soil.

(2). Cotyledons

- * Cotyledons are the leaves at the embryonic stage
- * A dicot embryo consists of two cotyledons.

STRUCTURE OF MONOCOT EMBRYO

A mature monocot embryo consists of:

- 1) Embryonal Axis
- 2) One Cotyledon

(1). Embryonal Axis

- * The embryonal axis possesses radicle at the lower end.
- * Radicle is covered by root cap.
- * Radicle and root cap are enclosed in a sheath called **coleorhiza**.
- * The portion of the embryonal axis above the level of attachment of **scutellum** (cotyledons) is the epicotyl.
- * Epicotyl consists of shoot apex.
- * Shoot apex is covered by protective sheath called **coleoptile**.
- * Coleoptile encloses a few leaves primordia.
- (2). Cotyledon

Page 3 of 8

- * Monocot embryo possess only one cotyledon
- * Cotyledon in grasses is called **scutellum**
- * It is placed laterally to the embryonal axis

SEED

- * Fertilized mature ovule is called seed.
- * It contains the embryo.
- * Seeds are formed inside the fruit (fruit is mature ovary)

Structure of Dicot Seed

* Dicot seed consists of:

1) Seed coat

- * It is double layered
- * Outer layer is testa and inner layer is tegmen
- * It provides protection
- 2) Micropyle
 - * Micropyle is a small pore in the seed coat.
 - * It is the retained micropyle of the ovule.
 - * It helps in the entry of water and oxygen during germination.
- 3) Hilum
 - * A scar left by the funicle or the stalk of the ovule on the seed is called hilum
- 4) Embryo
 - * It consists of two cotyledons and embryonal axis
- 1) Endosperm
 - * The nourishment tissue of seed
 - * Majority of dicot seeds do not have endosperm.

* It may get consumed during the development of the embryo.

Structure of Monocot Seed

Monocot seed - example - Maize seed

- 1) Seed coat
 - * Testa is fused with pericarp (fruit wall)
 - * It provides protection

2) Embryo

- * It consists of a shield shaped cotyledon.
- * The cotyledon is known as scutellum.
- * The embryonal axis is seen in the cotyledon.
- * The upper portion of the embryonal axis is the plumule.
- * The lower portion is the radicle.
- * The plumule is covered by a sheath called coleoptile and radicle is covered by coleorhiza.

3) Endosperm

- * Majority of monocot seeds possess endosperm
- * It is rich in stored food materials
- * It provides nourishment to the developing embryo
- * In maize, endosperm is surrounded by a protein rich layer called aleurone layer

TYPES OF SEEDS

Based on the presence or absence of endosperm, seeds are of two types:

1) Endospermous seeds or Albuminous seeds

- * Seeds with endosperm are called endospermous or albuminous seeds
- * Endosperm stores reserve food for the developing embryo
- * Eg. Maize, wheat, barley, castor
- 2) Non-endospermous seeds / Non-albuminous seeds
 - * Seeds without endosperm
 - * Endosperm is consumed by the developing embryo
 - * Eg. Ground nut, pea, beans, cashew nut, sunflower

PERISPERM

- * The residual, persistent nucellus in the seed is called perisperm.
- * Eexample: Black pepper, beet

Similar Terms

- **1) Endosperm**: The tissue present in seeds that provide nourishment to the developing embryo
- 2) **Perisperm**: The residual, persistent nucellus
- 3) **Pericarp**: Name of the fruit wall

Seed Dormancy

* Seed dormancy is the inability of a seed to germinate even in the presence favourable conditions.

Significance of Seeds

- * Seeds contain embryo and help in propagation of plants
- * Seeds are rich in reserve food for providing nourishment to the embryo
- * The embryos are well protected inside the seed coat
- * Seeds are produced by sexual reproduction, and thus create genetic recombination and variation
- * Our agriculture is mainly based on seeds
- * Seed dormancy and seed dehydration help in storage of seeds
- * Seeds are rich in nutrients and are a part of our daily food

Seed Viability

- * Seed viability is the ability of a seed to germinate under favourable condition
- * Viability period vary from seed to seed
- * Eg. Oxalis: a few months
- * *Trifolium*: hundreds of years
- * The oldest viable seed: Lupines arcticus (Lupine), excavated from Arctic Tundra
- * Date palm seed excavated from King Herod's palace: 2000 years old

FRUITS

- * The fruit is the ripened (mature) ovary.
- * Fruit wall is called pericarp.
- * Types of fruits based on the nature of fruit wall:
 - i. Fleshy fruits
 - The fruit wall is soft and fleshy
 - Eg. Mango, Orange, Guava
 - ii. Dry fruits
 - The fruit wall is dry
 - Eg. Mustard, Ground nut
- * Types of fruits based on development:
 - i. True Fruit
 - Fruits which develop only from the ovary

Please visit: www.easybiologyclass.com

Follow the links for....

BIOLOGY EXAMINATIONS

Please Share with your Friends, Relatives, Students and Colleagues

4

• Eg. Wheat, Maize, Pea

ii. False Fruit

- Fruits which develop from floral parts other than the ovary (thalamus or pedicel)
- Eg. Strawberry, cashew, apple

Parthenocarpic Fruits

- * These are the fruits which are developed without fertilization.
- * Ovary develops in to fruits without fertilization.
- * Parthenocarpic fruits are seedless fruits
- * Example: Banana
- * Growth hormones can be applied to produce parthenocarpic fruits in agriculture.

APOMIXIS AND POLYEMBRYONY

a) Apomixis

- * Apomixis meaning: Away from mixing
- * It is a method of reproduction in which seeds are formed without fertilization (fusion of gametes).
- * In this method, seeds are formed asexually from the maternal tissues (diploid) of the ovule without involving meiosis and fertilization.
- * The embryo thus formed is identical to the parent
- * Types of Apomixis:
 - **i. Parthenogenesis**: The development of female gamete (egg) into a new organism without fertilization. Here, the egg cell is diploid which is formed without meiosis
 - ii. Parthenocarpy: The development of ovary into fruit without fertilization

Importance of Apomixis in Agriculture

- * Apomixis does not involve mixing or sexual fusion of gametes
- * So, there is no segregation of genes
- * Genetic make-up remains the same
- * This property can be utilized in the production of apomict seeds of hybrid plants

- * If the hybrids are made into apomicts, such seeds can maintain same genetic make up
- * So, there is no need to buy hybrid seeds every season
- b) Polyembryony
- * Formation of many (or more than one) embryos within the seed.
- * Example: Onion, mango, ground nut, orange, conifers, citrus etc.

* <u>Reasons for polyembryony</u>

- 1) Presence of more than one egg in the embryo sac and they all may get fertilized.
- 2) Presence of more embryo sacs in the ovule.
- 3) Presence of more embryos that develop from different parts of the ovule such as synergids, antipodals, nucellus tissues, integuments, egg cell (fertilized / unfertilized) etc.

So far, we have completed the discussion of chapter-2 of Plus Two Botany (Sexual Reproduction in Flowering Plants).

Part – 2, Chick here...

PLEASE SHARE THIS PDF WITH YOUR FRIENDS

Visit EasyBiologyClass for:

- * <u>Plus One Botany and Zoology Notes</u>
- ✤ <u>Plus Two Botany and Zoology Notes</u>
- * <u>Previous Year Question Papers</u>
- * <u>NEET Previous Year Solved Papers</u>
- ✤ <u>NEET Mock Tests (Online)</u>
- ✤ <u>Notes</u> | <u>PPTs</u> | <u>MCQs</u> | <u>Many More....</u> |