Reg. No.	•	•••••••••••••••••••••••••••••••••••••••
Name .		

Code No. 8017

For Scheme-I Candidates only

Time: 2 Hours Cool-off time: 20 Minutes Preparatory Time: 5 Minutes

Part – III BIOLOGY

Maximum: 60 Scores

BIOLOG'

General Instructions to Candidates:

Second Year – 2015

SAY / IMPROVEMENT

- There is a 'cool-off time' of 10 minutes each for Botany and Zoology in addition to the writing time of 1 hour each. Further there is '5 minutes' 'Preparatory Time' at the end of the Botany Examination and before the commencement of Zoology Examination.
- You are not allowed to write your answers nor to discuss anything with others during the 'cool-off time' and 'Preparatory Time'.
- Use the 'cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- All questions are compulsory and only internal choice is allowed.
- When you select a question, all the sub-questions must be answered from the same question itself.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

PART - A BOTANY

(Maximum: 30 Scores)

Time: 1 Hour

40	Air er				Cool-off time	: 10 Minutes	
1.	(a)	Yeast asexual	lly multiples by b	udding whereas Penicilli	ium by	·	
1.	(b)	Bryophyllum	vegetatively mu	altiples by adventitious	buds water hy	yacinth by	
	(0)				(Scor	$e: \frac{1}{2} + \frac{1}{2} = 1)$	
		*		3		ř -	
2.	By of	serving the r	elationship of the	first pair fills up the blan	nks.		
	(a)	Net primary	productivity = Gro	oss primary productivity	- Respiration.		
v.			y productivity is				
	(b)	Carbon : Gas					
	3 35		•		(Scor	re: $\frac{1}{2} + \frac{1}{2} = 1$)	
							*
3.	Ina	Grama Panch	ayat. Members wa	anted to start a Bee-keep	ing industry. Wh	nat are your	
J.			ccessful bee keep			(Scores: 2)	
4.	Obse	erve the relation	on in the first pair	and fill up the blank in	the seco		
	(a)	Crop	Variety	Resistant to disease			
		Brassica	Pusa Swarnim	Wheat rust			
		Chilli		Chilly mosaic virus			
	u = 1	75.0		PELS-WILLII	Indak	(Score: 1/2)	
	(b)	Crop	Variety	Insect pest			
		Okra	Pusa sawani	Shoot & Fruit borer].		
		Flat bean		Jassids, fruit borer			
				and aphids			
	A. 67	/ Line	•			(Score: 1/2)	
			(3)			202	
5.	A n	nultinational	company successf	fully cloned a gene of in	terest and also o	ptimized the	
	con			of target protein.		(01/)	
	(a)	Name the a	pparatus for large	scale production of such	h proteins.	(Score: ½)	1
	(b)	Briefly exp	lain the apparatus			(Scores: 1½)	2

6. Observe the equation.

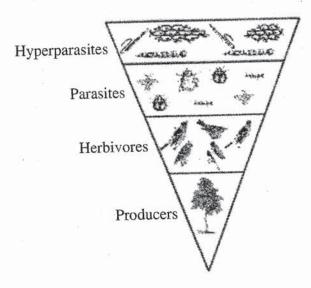
$$\frac{dN}{dt} = rN \frac{(K - N)}{K}$$

(a) Which type of growth curve does it represents?

(Score: 1/2)

- (b) What do the following notations represent:
 - (a) N
 - (b) r
 - (c) K

(Scores: 11/2)


- A farmer approached an Agriculture officer to tell his grievance i.e., reduction in tobacco yield due to root damage by nematodes.
 - (a) What is your suggestion to prevent this infestation?

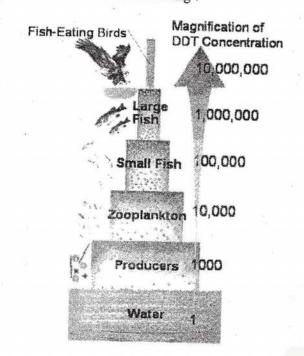
(Score: 1/2)

(b) Briefly explain the process.

(Scores: 11/2)

8. Field survey by a team of students recorded the following data related to number of organisms in an ecosystem and plotted that into a figure shown below:

Observe the figure and explain the pyramid.


(Scores: 2)

In a scientific forum you are allotted a topic 'Causes of biodiversity losses'. Describe
any two major reasons for this. (Scores: 2)

- 10. The chromosome number of onion is = 16 (2n). Find the chromosome number in the following cells with reasons.
 - (a) Endosperm cell
 - (b) Zygote

(Scores: 1 + 1 = 2)

11. Observe the diagram and answer the following:

- (a) Suggest the reasons for the presence of DDT in the water.
- (b) Fish eating birds of this area have higher DDT concentration in the ody. Justify.
- (c) What will be the impact of DDT in the birds?

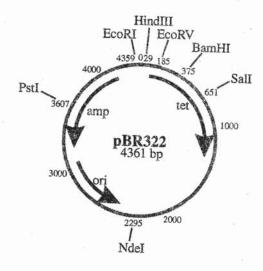
(Scores: 1 + 2 = 4)

OR

 United Nations Framework convention on climate change, an international treaty signed by 194 countries to cooperatively discuss global climate change and its impact.
 As a science student,

(a) What is global warming?

(Score: 1)


(b) Explain the reasons and give suggestions to control global warming?

(Scores: 3)

- You are supplied with three different flowers such as Maize, Vallisneria and Rose and they have different pollinating agents also.
 - (a) Differentiate the type of pollination.
 - (b) Write their various adaptability in the plants suited to pollination.

(Scores: 1+3=4)

13. Observe the cloning vector and explain the following:

- ı) Ori
-) Bam HI

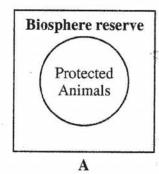
(Scores: 1+1=2)

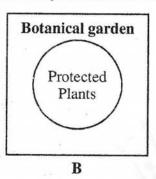
- One of the speaker in the National Children's Science Congress delivered a talk about Transgenic animals. Explore any 2 benefits of Transgenic animals. (Scores: 2)
- 15. Hydrosere succession stages are given below. Arrange them in order.

Scrub stage – forest – submerged free floating – Marsh Meadow – Submerged stage – Reed swamp – Phytoplankton. (Score: 1)

PART – B ZOOLOGY

(Maximum: 30 Scores)

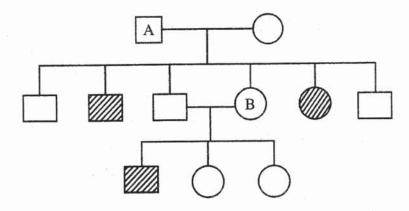

Time: 1 Hour


Cool-off time: 10 Minutes

- 1. Choose the odd one from the following and write the common feature of others:
 - (a) Estrogen
 - (b) Androgen
 - (c) Relaxin
 - (d) Progesterone

(Score:1)

2 Γwo approaches for the conservation of biodiversity is shown as A and B.



- (a) Identify the type of biodiversity conservation shown in A and B.
- (b) Write the difference between the two types of biodiversity conservation shown in A and B.
- (c) Which of the above approach is more desirable when there is an urgent need to save a species? (Scores: 3)
- 3. Match the terms given in the three columns of the table correctly:

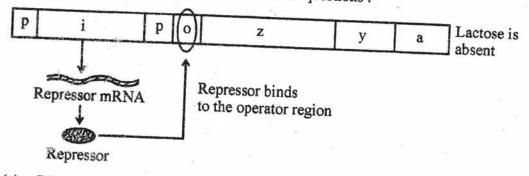
Pathogen	Group	Disease	
Haemophilus Influenzae	Protozoa	Ringworm	
Plasmodium Vivax	Fungus	Pneumonia	
Wuchereria Bancrofli	Bacteria	Malaria	
Trichophyton	Flatworm	Filariasis	

(Scores: 2)

4. Diagrammatic representation of the pedigree analysis of the inheritance of sickle cell anaemia is shown below:

- (a) ne the type of inheritance shown in the figure.
- (b) rite the genotype of A and B.

(Hint : Disease is controlled by a pair of alleles HbA and HbS)

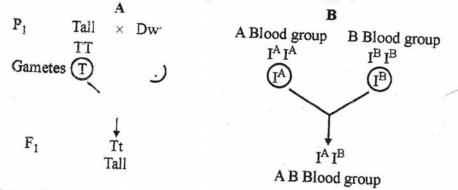

Represent pedigree analysis of an X-linked recessive inheritance diagrammatically.

(Scores: 3)

- 5 3OD of some water samples are given below:
 - A. Sample 1 200 mg/L
 - B. Sample 2 80 mg/L
 - C. Sample 3 300 mg/L
 - D. Sample 4 25 mg/L
 - (a) Which of the above water sample is most polluted?
 - (b) What is meant by flocs? What is its role in sewage treatment? (Scores: 2)
- 6. "If proper care and attention is not given by adults, adolescents may become addicted to drugs/alcohol." What is your opinion about this statement? Substantiate your answer.

(Scores: 2)

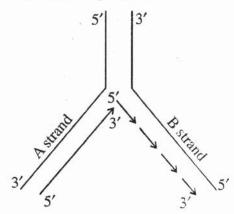
Observe the following diagram and answer the questions:


- (a) Diagrammatically represent the changes take place when lactose is added to the medium.
- (b) What is the role of z, y and a genes in this metabolic pathway? (Scores: 3)
- Some techniques commonly used for infertility treatment are given below. Read them
 carefully and answer the questions

ZIFT, GIFT, ICSI, IUI, IVF

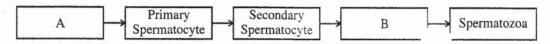
- (a) Which of the above technique is used for the collection of sperm from the husband or a healthy donor and artificially introduced into the vagina or uterus of the female?
- (b) Distinguish between ZIFT and GIFT.
- (c) Write the common term used to denote the techniques given above.

(Scores: 3)


Observe the inheritance shown in A

- (a) Name the type of inheritance shown in A and B.
- (b) What is the difference between the two types of inheritance?

(Scores: 2)

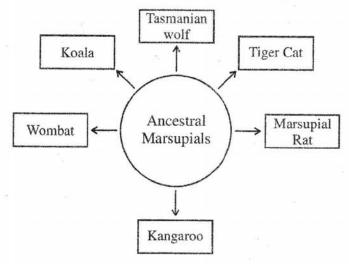

10. Observe the diagram and answer the questions:

- (a) What is the difference in the replication processes in A strand and B strand?
- (b) What is the role of DNA ligase in the replication process in B strand?
- (c) What is meant by Replication fork?

(Scores: 3)

11. Complete the flow chart showing spermatogenesis by filling A and B and answer the questions:

- (a) What is the chromosome number of primary spermatocyte
- (b) What is the significance of reduction division in spermate sis? (Scores: 2)
- 12. Four groups of organs are given below:


Read them carefully and answer the questions:

- A. Thorns of bougainvilla and Tendrils of cucurbita
- B. Eyes of octopus and mammals
- C. Flippers of penguin and dolphin
- D. Forelimbs of cheetah and man
- (a) Categorise the four groups of organs as homologous organs and analogous organs.
- (b) Based on each group of organs differentiate convergent evolution and divergent evolution.

(c) Illustrate homologous and analogous organs as evidences for evolution. (Scores: 4)

OR

Observe the diagrammatic representation and answer the questions:

- (a) Explain the phenomenon shown in the figure.
- (b) How can it be considered as an evidence of evolution?
- (c) Write any other example for this phenomenon. Explain. (Scores: 4)