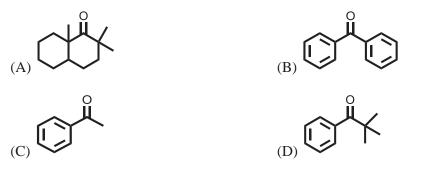


Previous Year Solved Question Paper of G.A.T.E. (XL) 2019 Life Sciences Chemistry Examination


(Original Question Paper with Answer Key) GRADUATE APTITUDE TEST IN ENGINEERING

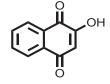
For more question papers, please visit: <u>www.easybiologyclass.com</u>

XL-P: Q. 1 – Q. 5 carry one mark each & Q. 6 – Q. 15 carry two marks each

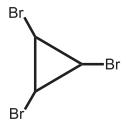
Q.1 The compound that provides a carboxylic acid, upon treatment with Br_2 / NaOH followed by acidification, is.

Ans. C

Ans. D


(E(**R**I

XL-P


- Q.2 The boiling point of halogens from F₂ to I₂ increases due to
 - (A) decrease in electron affinity
 - (B) decrease in ionization potential
 - (C) dipole-dipole interaction
 - (D) induced dipole induced dipole interaction
- Q.3 According to VSEPR theory, the species that has the smallest F-X-F angle (where X = central atom) is
 - (A) BF_3 (B) PF_3 (C) BF_4 (D) IF_4

Ans. D

Q.4 The total number of tautomers for the following molecule (including the structure provided below) is _____.

Ans. 3 to 3

Ans. 2 to 2

EBC _{XL-P}

Q.6 For the reaction mechanism,

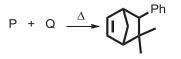
$$\begin{array}{ccc} 2X & & Y \\ Y & & P \end{array} \quad For this step, assume K_{eq} = [Y]/[X]^2 \\ k: rate constant for this step \end{array}$$

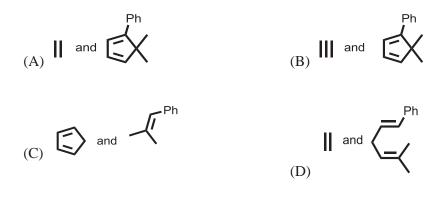
the rate law is .

(A)
$$\frac{d[P]}{dt} = K_{eq}[Y]$$

(B) $\frac{d[P]}{dt} = k [X]^2$
(C) $\frac{d[P]}{dt} = k K_{eq}[Y]$
(D) $\frac{d[P]}{dt} = k K_{eq} [X]^2$

Ans. D

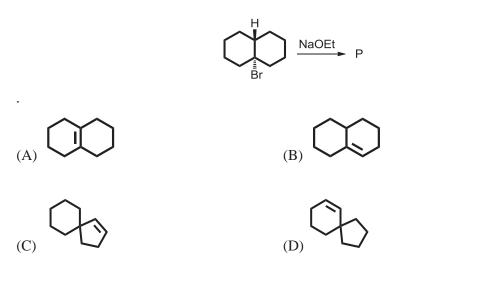

Q.7 Match the type of reaction in Group-1 with the most appropriate description in Group-2

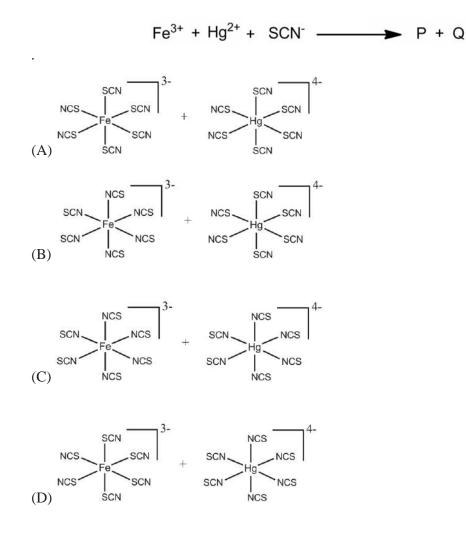

	Group 1		Group 2
Р	Hydroboration-oxidation	1	Electrophilic aromatic substitution
Q	Nucleophilic aromatic substitution	2	Oxaphosphetane intermediate
R	Wittig reaction	3	Meisenheimer complex
S	Friedel-Crafts reaction	4	Anti-Markownikoff's product

(A) P-2, Q-4, R-1, S-3

- (B) P-4, Q-3, R-1, S-2
- (C) P-4, Q-3, R-2, S-1
- (D) P-2, Q-1, R-4, S-3

Q.8 The reactants P and Q in the following reaction are




Ans. C

Ans. C

Q.9 The major product formed in the following reaction is

Q.10 The most stable coordination complexes P and Q formed in the following reaction are

Ans. B

EBC _{XL-P}

A

www.easybiologyclass.com

Q.11 A coordination complex Y upon reaction with AgNO ₃ solution does NOT give any precipitation. Complex Y possesses two isomers, of which one has zero dipole moment. The	OMIL 2017	
	Q.11	oordination complex Y upon reaction with AgNO ₃ solution does NOT give any ipitation. Complex Y possesses two isomers, of which one has zero dipole moment. The
crystal field stabilization energy of Y is either -0.8 Δ_0 or -0.8 Δ_t . The magnetic moment for Y is found to be 3.9 Bohr Magneton. The coordination complex Y is		

(A) [Ti(NH ₃) ₄ (Cl) ₂]	(B) [Co(NH ₃) ₄ (H ₂ O) ₂]Cl ₂
(C) $[Co(NH_3)_2(Cl)_2]$	(D) [Co(NH ₃) ₄ (Cl) ₂]

Ans. D

Q.12 A protein in denatured state (D) is in equilibrium with native state (N).

Print less... Save paper... Save trees....Save our Earth!

At 360 K, both N and D states are equally populated. If the standard entropy change for the reaction at this temperature $\Delta S^0 = -139 \text{ J K}^{-1} \text{ mol}^{-1}$, then the corresponding standard enthalpy change ΔH^0 for the reaction in kJ mol⁻¹ (**rounded off to one decimal place**) is

Ans. -51 to -49

Q.13 The pH of a 1.0 L buffer solution containing 0.2 mol of acetic acid (CH₃COOH) and 0.3 mol of sodium acetate (CH₃COONa) is 5.0. The K_a of acetic acid is $P \times 10^{-5}$, where the numerical value of P (**rounded off to one decimal place**) is _____

Ans. 1.4 TO .16

Q.14 Based on molecular orbital theory, the number of paramagnetic species in the following list

N₂, N_{2⁺}, N_{2^{2⁻}, O₂, O₂⁺, O_{2⁻} and O_{2^{2⁻}</sub>}</sub>}

is ____

(assume that there is no change in energy of the orbitals upon addition/removal of electrons in a molecule)

Ans. 5 TO 5

Q.15 Given the standard reduction potentials, $E_{Cu^{+2}/Cu}^{0} = 0.34 \text{ V}$ and $E_{Ag^{+}/Ag}^{0} = 0.80 \text{ V}$, the standard free energy change (ΔG^{0}) for the reaction

 $Cu(s) + 2Ag^+(aq) \rightarrow Cu^{+2}(aq) + 2Ag(s)$

in kJ mol⁻¹ (**rounded off to one decimal place;** F= 96500 C mol⁻¹), is _____

Ans. -89.8 TO -87.8

END OF THE QUESTION PAPER

Please visit: *www.easybiologyclass.com* for:


- Lecture Notes
- Biology PPTs
- Biology MCQs
- Online Mock Tests (MCQ)
- Video Tutorials
- Practical Aids
- Model Question Papers of NET, GATE, DBT, ICMR Exams
- **CSIR NET Life Sciences Previous Year Question Papers**
- GATE Previous Year Question Papers
- > DBT BET JRF Previous Year Question Papers
- > ICMR JRF Entrance Exam Resources
- Jobs Notifications
- Higher Studies in Biology / Life Sciences
- Seminar / Workshop/ Conference Notifications
- > And many more....

Please subscribe our youtube channel: easybiologyclass <u>https://www.youtube.com/user/easybiologyclass/videos</u>

You can access more PDFs & PPTs from our **Slideshare** account http://www.slideshare.net/EasyBiologyClassEBC/

You Tube

Our sister concern: www.angiospermtaxonomy.com