

Previous Year Question Paper of NEET (AIPMT) Exams

NEET/AIPMT 2012

Preliminary Paper

Original Question Paper with Answer Key (AIPMT)

NATIONAL ELIGIBILITY CUM ENTRANCE TEST (UG)

CENTRAL BOARD OF SECONDARY EDUCATION, DELHI

For more question papers, please visit: <u>www.easybiologyclass.com</u>

Print Less... Save Paper... Save Trees...

Test Booklet Code

Important Instructions

- 1 The Answer Sheet is inside this test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on side-1 and side-2 carefully with blue/black ball point pen only.
- 2. The Test is of **3 hours** duration and Test Booklet contains **200** questions. Each question carries **4** marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 800.
- 3. Use **Blue/Black Ball Point Pen only** for writing particulars on this page/marking responses.

4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.

5. On completion of the test, the candidate must handover the Answer Sheet to the invigilator in the Room/Hall. The candidates are allowed to take away this Test Booklet with them.

- 6. The CODE for this Booklet is **B**. Make sure that the CODE printed on **Side-2** of the Answer Sheet is the same as that on this Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklets and the Answer Sheets.
- The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your roll no. anywhere else except in the specified space in the Test Booklet/ Answer Sheet.
- Use of white fluid for correction is **NOT** permissible on the Answer Sheet. 8.
- 9. Each Candidate must show on demand his/her Admission Card to the Invigilator.
- 10. No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
- 11. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. Cases where a candidate has not signed the Attendance Sheet the second time will be deemed not to have handed over Answer Sheet and dealt with as an unfair means case.
- 12. Use of Electronic/Manual Calculator is prohibited.
- 13. The candidates are governed by all Rules and Regulations of the Board with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of the Board.
- 14. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 15. The candidates will write the Correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance sheet.

Name of the Candidate (in Capital Letters):

Roll Number :	in figure
---------------	-----------

: in words

Centre of Examination (in Capitals):

Invigilator's Signature Candidate's Signature :

F& imitorign turstitum poperst please inisident www.easybiologyclass.com

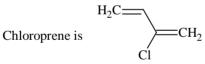
Print Less... Save Paper... Save Trees...

CBSE - 2012 (Pre)

CHEMISTRY

- 1. CH_3CHO and $C_6H_5CH_2CHO$ can be distinguished chemically by
 - (1) Fehling solution test (2) Benedict test
 - (3) Iodoform test (4) Tollen's reagent test

Sol: [3] Aldehydes and ketones having $\begin{array}{c} O \\ \parallel \\ CH_3 - C - \end{array}$ group give iodoform test.


$$CH_{3} - C - H + 3I_{2} + 4NaOH \longrightarrow CHI_{3} + HCOONa + 3NaI + 3H_{2}O$$

Yellow ppt.

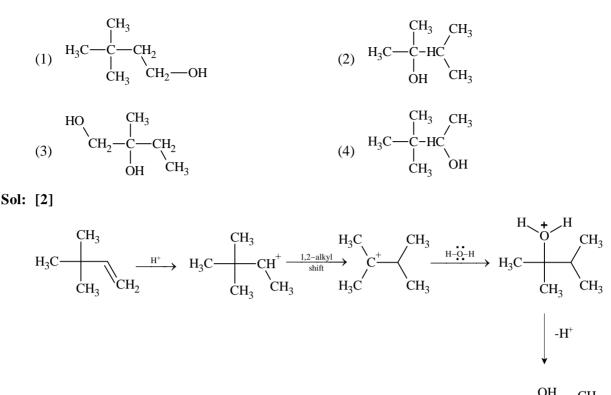
2. p_A and p_B are the vapour pressure of pure liquid components. A and B, respectively of an ideal binary solution. If x_A represents the mole fraction of component A, the total pressure of the solution will be

(1)
$$p_B + x_A (p_A - p_B)$$
 (2) $p_A + x_A (p_B - p_A)$ (3) $p_A + x_A (p_A - p_B)$ (4) $p_B + x_A (p_B - p_A)$
Sol: [1] $p_{Total} = p_A \cdot x_A + p_B \cdot x_B$
 $x_B + x_A = 1$
 $x_B = 1 - x_A$
 $p_{Total} = p_A \cdot x_A + p_B(1 - x_B)$
3 Which one of the following is **not** a condensation polymer?

3. Which one of the following is **not** a condensation polymer?

- (1) Neoprene (2) Melamine (3) Glyptal (4) Dacron
- Sol: [1] Addition polymer of chloroprene is neoprene

- 4. A metal crystallizes with a face-centered cubic lattice. The edge of the unit cell is 408 pm. The **diameter** of the metal atom is :
 - (1) 204 pm (2) 288 pm (3) 408 pm (4) 144 pm


Sol: [2] $\sqrt{2}a = 4r \Rightarrow 2\pi = \frac{a}{\sqrt{2}} = \frac{408}{1.414} = 288 \text{pm}$

- 5. Equimolar solutions of the following substances were prepared separately. Which one of these will record the highest pH value?
 - (1) $BeCl_2$ (2) $BaCl_2$ (3) $AlCl_3$ (4) $LiCl_3$
- Sol: [2] Salt of strong acid and strong base
- 6. In the following reaction:

CU

$$\begin{array}{c} & & & & \\ H_{3}C \longrightarrow C \longrightarrow CH & \xrightarrow{H_{2}O/H^{+}} & A & \\ & & & \\ & & & \\ CH_{3} & & CH_{2} \\ \hline \end{array} \xrightarrow{CH_{2}} CH_{2} & papers, please visit... \end{array}$$

The major product is:

7. The enthalpy of fusion of water is 1.435 kcal/mol. The molar entropy change for the melting of ice at 0°C

(1) $0.526 \text{ cal/(mol K)}$	(2) $10.52 \text{ cal} / (\text{mol K})$
(3) $21.04 \text{ cal} / (\text{mol K})$	(4) $5.260 \text{ cal/(mol K)}$

Sol: [4] $\Delta S_{\text{fusion}} = \frac{\Delta H_f}{T} = \frac{1.435 \times 10^3}{273} = 5.256 \text{ cal/molK}$

8. Limiting molar conductivity of NH₄OH (i.e. \wedge_m (NH₄OH)) is equal to:

- $(1) \quad \wedge_{m}(\mathrm{NH}_{4}\mathrm{Cl}) + \wedge_{m}(\mathrm{NaOH}) \wedge_{m}(\mathrm{NaCl}) \qquad (2) \quad \wedge_{m}(\mathrm{NH}_{4}\mathrm{Cl}) + \wedge_{m}(\mathrm{NaCl}) \wedge_{m}(\mathrm{NaOH}) \\ (3) \quad \wedge_{m}(\mathrm{NaOH}) + \wedge_{m}(\mathrm{NaCl}) \wedge_{m}(\mathrm{NH}_{4}\mathrm{Cl}) \qquad (4) \quad \wedge_{m}(\mathrm{NH}_{4}\mathrm{OH}) + \wedge_{m}(\mathrm{NH}_{4}\mathrm{Cl}) \wedge_{m}(\mathrm{HCl}) \\ (4) \quad \wedge_{m}(\mathrm{NH}_{4}\mathrm{OH}) + \wedge_{m}(\mathrm{NH}_{4}\mathrm{OH}) + \wedge_{m}(\mathrm{NH}_{4}\mathrm{OH}) \\ (4) \quad \wedge_{m}(\mathrm{NH}_{4}\mathrm{OH}) + \wedge_{m}(\mathrm{NH}_{4}\mathrm{OH}) + \wedge_{m}(\mathrm{NH}_{4}\mathrm{OH}) \\ (4) \quad \wedge_{m}(\mathrm{NH}_{4}\mathrm{OH}) + \wedge_{m}(\mathrm{NH}_{4}\mathrm{OH}) \\ (4) \quad \wedge_{m}(\mathrm{NH}_{4}\mathrm{OH}) + \wedge_{m}(\mathrm{NH}_{4}\mathrm{OH}) + \wedge_{m}(\mathrm{NH}_{4}\mathrm{OH}) \\ (4) \quad \wedge_{m}(\mathrm{NH}_{4}\mathrm{OH}) + \wedge_{m}(\mathrm{NH}_{4}\mathrm{OH}) + \wedge_{m}(\mathrm{NH}_{4}\mathrm{OH}) + \wedge_{m}(\mathrm{NH}_{4}\mathrm{OH}) + \wedge_{m}(\mathrm{NH}_{4}\mathrm{OH}) \\ (4) \quad \wedge_{m}(\mathrm{NH}_{4}\mathrm{OH}) + \wedge_{m}(\mathrm{NH}_{4$
- **Sol:** [1] $\wedge^0_m(NH_4Cl) + \wedge^0_m(NaOH) \wedge^0_m(NaCl)$ Self explained

9. Which one of the following is a mineral of iron?

- (2) Malachite (1) Magnetite
- Sol: [1] Magnetite (Fe_3O_4)
- **10.** In Freundlich Adsorption isotherm, the value of 1/n is:
 - (1) 1 in case of chemisorption (2)between 0 and 1 in all cases
 - (3) between 2 and 4 in all cases 1 in case of physical adsorption (4)

Sdor[2]or quistion papers, please visit...

(3) Cassiterite

www.easybiologyclass.com

(4) Pyrolusite

H₃C

CBS	-2012 (Pre) Save PaperSave Trees	Chemistry
11.	Identif	y the alloy containing a non-metal as a constituent in it.	
	(1) B	bronze (2) Invar (3) Steel	(4) Bell metal
Sol:	[3] Ir	n steel, C is also present	
12.	Buffer	solutions have constant acidity and alkalinity because:	
	(1) th	ney have fixed value of pH	
	(2) th	nese give unionised acid or base on reaction with added acid	or alkali
	(3) a	cids and alkalies in these solutions are shielded from attack	by other ions
	(4) th	ney have large excess of H ⁺ or OH ⁻ ions	
Sol:	[2] S	elf explanatory	
13.	Which	one of the following pairs is isostructural (i.e. having the sa	me shape and hybridization)?
	(1) []	BF_4^- and NH_4^+] (2) [BCl ₃ and BaCl ₃] (3) [NH ₃ and	1 NO_3^-] (4) [NF ₃ and BF ₃]
Sol:	[1] Ir	n both the compounds, central atom is sp ³ hybridized and str	ucture is tetrahedral.
14.	pH of a	a saturated solution of $Ba(OH)_2$ is 12. The value of solubilit	y product (K_{sp}) of Ba(OH) ₂ is
	(1) 5	$.0 \times 10^{-6}$ (2) 3.3×10^{-7} (3) 5.0×10^{-7}	7 (4) 4.0×10^{-6}
Sol:	[3] p		
	p	$OH = 2 \qquad \Rightarrow [OH^{-}] = 10^{-2}$	
	E	$Ba(OH)_2 \Longrightarrow Ba^{2+} + 2OH^- \Longrightarrow 2x = 10^{-2}$	
		$x \qquad 2x \qquad \Rightarrow x = 5 \times 10^{-3}$	
	K	$S_{\rm sp} = x \ (2x)^2 = 5 \times 10^{-3} \times (10^{-2})^2 = 5 \times 10^{-7}$	
15.		of each gas A and of gas B takes 150 and 200 seconds resp	
		nder the similar conditions. If molecular mass of gas B is 36, (2) 06 (2) 128	
Cal	(1) 64		(4) 32
		lowever question is wrong.	a of
16.	-	otecting power of lyophilic colloidal sol is expressed in term Dividation number (2) Coagulation	
			niscelle concentration
Sol	[3] F		
17.		ency of vitamin B_1 causes the disease	
1/.	(1) S		(4) Cheilosis
Sol:	[3] F		(),
18.		he is treated with excess of ethanol in the presence of hydroch	loric acid. The product obtained is:
	Н	H_3C $O-C_2H_5$ H_3C-C_1 H_3C $O-C_2H_5$ (2)	
	(1) H	$I_{3}C O - C_{2}H_{5}$ (2)	
	11		CH ₃
	Н	I ₃ C—CH ₂ <u>0</u>	
		$CH_2 - C$ H_3C	НС
	(3)	CH_2 — CH_2 (4) C	
		$H_{3}C - CH_{2} O H_{2} - CH_{2} O H_{3}C - CH_{2} O H_{3}C - CH_{2} O H_{3}C O H_$	$D - C_2 H_5$
Fo	r more	e question papers, please visit v	vww.easybiologyclass.com
301:	[1]		

CBSE 2012 (Pre) Save Paper Save Trees

- 19. The ease of adsorption of the hydrated alkali metal ions on an ion-exchange resins follows the order:
 - (1) $Na^+ < Li^+ < K^+ < Rb^+$ (2) $Li^+ < K^+ < Na^+ < Rb^+$
 - (3) $Rb^+ < K^+ < Na^+ < Li^+$ (4) $K^+ < Na^+ < Rb^+ < Li^+$

Sol: [3] Greater the size of the hydrated ion, more will be the surface area and more will be its ease of adsorption.

- 20. Which one of the following statements is incorrect about enzyme catalysis?
 - (1) Enzymes are least reactive at optimum temperature
 - (2) Enzymes are mostly proteinous in nature
 - (3) Enzyme action is specific
 - (4) Enzymes are denaturated by ultraviolet rays and at high temperature
- Sol: [1] Enzyme is most active at optimum temperature and pH
- 21. In which of the following compounds, nitrogen exhibits highest oxidation state?
 - (1) NH_2OH (2) N_2H_4 (3) NH_3 (4) N_3H
- **Sol:** [4] Oxidation state of N is $N_3H = -1/3$
- **22.** Bond order of 1.5 is shown by:

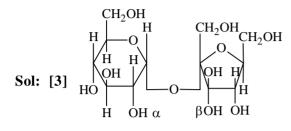
(1)
$$O_2$$
 (2) O_2^+ (3) O_2^- (4) O_2^{2-}

Sol: [3] Bond Order =
$$\frac{1}{2}(N_b - N_a) = \frac{1}{2}(10 - 7) = 1.5$$

23. Maximum number of electrons in a subshell with l = 3 and n = 4 is:

- **Sol:** [2] i.e. 4f maximum number of electrons that can be accommodated in f-subshell = 14
- **24.** The correct set of four quantum numbers for the valence electron of rubidium atom (Z = 37) is(1) 5, 1, 0, +1/2(2) 5, 1, 1, +1/2(3) 6, 0, 0, +1/2(4) 5, 0, 0, +1/2
- **Sol:** [4] i.e. [Kr]5s¹ so n = 5, l = 0, m = 0, s = +1/2
- 25. In a reaction, $A + B \rightarrow$ Product, rate is doubled when the concentration of B is doubled, and rate increases by a factor of 8 when the concentrations of both the reactants (A and B) are doubled, rate law for the reaction can be written as:

(1) Rate =
$$k[A]^2$$
 [B] (2) Rate = $k[A]$ [B]² (3) Rate = $k[A]^2$ [B]² (4) Rate = $k[A]$ [B]


Sol: [1] $A + B \rightarrow Product$

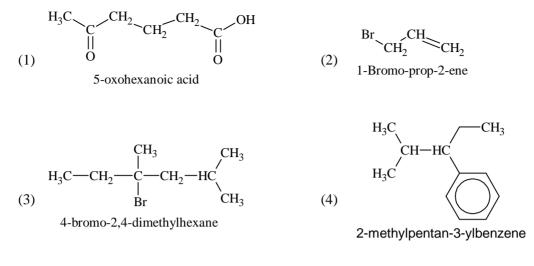
 $r_{1} = [A]^{x}[B]^{y}$ $r_{2} = [A]^{x}[2B]^{y} = 2r_{1} = 2 \times [A]^{x}[B]^{y} \Longrightarrow 2^{y} = 2 \Longrightarrow y = 1$ $r_{3} = [2A]^{x}[2B]^{y} = 8r_{1} = 8 \times [A]^{x}[B]^{y}$ $= 2^{x} \times 2^{y} = 2^{3} = 2^{x} = 2^{2}$ Rate = k [A]² [B]

26. A mixture of potassium chlorate, oxalic acid and sulphuric acid is heated. During the reaction which element undergoes maximum change in the oxidation number?

Sol: [4] ClO₃⁻ changes to Cl⁻ *For more*, *question_papers, please visit...*

- 27. Which one of the following sets of monosaccharides forms sucrose?
 - (1) α -D-Glucopyranose and β -D-fructopyranose
 - (2) α -D-Galactopyranose and α -D-Glucopyranose
 - (3) α -D-Glucopyranose and β -D-fructofuranose
 - (4) β -D-Glucopyranose and α -D-fructofuranose

- 28. Which one of the following statements regarding photochemical smog is not correct?
 - (1) Photochemical smog does not cause irritation in eyes and throat
 - (2) Carbon monoxide does not play any role in photochemical smog formation
 - (3) Photochemical smog is an oxidizing agent in character
 - (4) Photochemical smog is formed through photochemical reaction involving solar energy.
- Sol: [1] Factual
- 29. Which of the following statements is not valid for oxoacids of phosphorus?
 - (1) All oxoacids contain atleast one P = O unit and one P OH group
 - (2) Orthophosphoric acid is used in the manufacture of triple superphosphate.
 - (3) Hypophosphorous acid is a diprotic acid.
 - (4) All oxoacids contain tetrahedral four coordinated phosphorous


- **30.** In the following sequence of reactions $CH_3 Br \xrightarrow{KCN} A \xrightarrow{H_3O^+} B \xrightarrow{LiAlH_4} C$, the end product (C) is
 - (1) Ethyl alcohol (2) Acetone (3) Methane (4) Acetaldehyde

Sol: [a] $CH_3 - Br \xrightarrow{KCN} CH_3CN \xrightarrow{H_3O^+} CH_3COOH \xrightarrow{LiAlH_4} CH_3 - CH_2 - OH_3COOH \xrightarrow{CH_2 - OH_3} CH_3 - CH_2 - OH_3COOH \xrightarrow{CH_3 - CH_3 -$

- 31. Which of the following acids does not exhibit optical isomerism?
 - (1) Tartaric acid (2) Maleic acid (3) α -amino acids (4) Lactic acid

HOOC COOH Maleic acid will not show optical isomerism due to absence of chirality. For more question papers, please visit...

32. Which nomenclature is not according to IUPAC system?

- Sol: [2] The correct name of compound will be 3-Bromoprop-1-ene
- **33.** The pair of species with the same bond order is

(1) N_2, O_2 (2) O_2^{2-}, B_2 (3) O_2^+, NO^+ (4) NO, CO

Sol: [2] $O_2^{2-} \longrightarrow B.O. = 1$

$$B_2 \longrightarrow B.O. = 1$$

34. In the extraction of copper from its sulphide ore, the metal is finally obtained by the reduction of cuprous oxide with:

(2) Copper (I) sulphide (Cu_2S)

(4) Iron sulphide (FeS)

- (1) Carbon monoxide (CO)
- (3) Sulphur dioxide (SO_2)
- **Sol:** [2] Cu_2O is reduced with Cu_2S

It is self reduction phenomena

- **35.** The correct order of decreasing acid strength of trichloroacetic acid (A), trifluoroacetic acid (B), acetic acid (C) and formic acid (D) is:
 - (1) A > C > B > D (2) B > A > D > C (3) B > D > C > A (4) A > B > C > D
- Sol: [2] Due to –I effect.
- 36. Aluminium is extracted from alumina (Al_2O_3) by electrolysis of a molten mixture of :
 - (1) $Al_2O_3 + KF + Na_3AlF_6$ (2) $Al_2O_3 + HF + NaAlF_4$
 - (3) $Al_2O_3 + CaF_2 + NaAlF_4$ (4) $Al_2O_3 + Na_3AlF_6 + CaF_2$
- **Sol:** [4] Alumina + Fluorspar + Cryolite
- 37. Which of the following species contains three bond pairs and one lone pair around the central atom?

(1)
$$PCl_3$$
 (2) H_2O (3) BF_3 (4) NH_2^-
Sol: [1] $Cl = P_1^-$ Cl

For more question papers, please visit...

Ċl

- **38.** Which of the following statements is **false**?
 - (1) Both starch and cellulose are polymers of glucose
 - (2) Artificial silk is derived from cellulose
 - (3) Nylon-66 is an example of elastomer
 - (4) The repeat unit in natural rubber is isoprene
- Sol: [3] Factual
- 39. The number of octahedral void(s) per atom present in a cubic close-packed structure is
 - (1) 4 (2) 1 (3) 3 (4) 2
- Sol: [2] In ccp the no. of atoms present per unit cell is 4 and total no. of O.V = 4 \Rightarrow per atom the no. of O.V = 1
- 40. Among the following compounds the one that is most reactive towards electrophilic nitration is:
 - (1) Benzene (2) Benzoic acid (3) Nitrobenzene (4) Toluene

Sol: [4] In (H_3) , CH₃ is ortho para directing and also ring activator.

- 41. Identify the wrong statement in the following:
 - (1) Atomic radius of the elements decreases as one moves across from left to right in the 2nd period of the periodic table
 - (2) Amongst isoelectronic species, smaller the positive charge on the carbon, smaller is the ionic radius
 - (3) Amongst isoelectronic species, greater the negative charge on the anion, larger is the ionic radius
 - (4) Atomic radius of the elements increases as one moves down the first group of the periodic table.
- Sol: [2] With increasing positive charge, effective nuclear charge increases so ionic radii decreases.
- **42.** In a zero-order reaction for every 10° rise of temperature, the rate is doubled. If the temperature is increased from 10°C to 100°C, the rate of the reaction will become:
 - (1) 128 times (2) 256 times (3) 512 times (4) 64 times

Sol: [3] $\frac{r_2}{r_1} = 2$ for every 10°

Temperature is raised from 10° to 100°

So
$$\frac{r_n}{r_1} = 2^{\frac{\Delta T}{10}} = 2^{\frac{\sigma}{10}}$$

 $r_n = r_1 \times 512$

- 43. Which of the statements is not true?
 - (1) $K_2Cr_2O_7$ solution becomes yellow on increasing the pH beyond 7
 - (2) On passing H_2S through acidified $K_2Cr_2O_7$ solution, a milky colour is observed
 - (3) Na₂Cr₂O₇ is preferred over K_2 Cr₂O₇ in volumetric analysis
 - (4) $K_2Cr_2O_7$ solution in acidic medium is orange

Solar Providential Solar Strategy Solar So

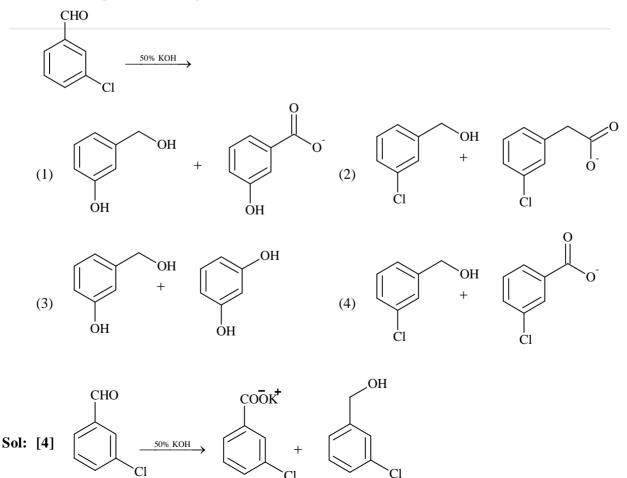
44. In which of the following reactions, standard reaction entropy change (ΔS°) is positive and standard Gibb's energy change (ΔG°) decreases sharply with increasing temperature?

(1)
$$\frac{1}{2}$$
C graphite $+\frac{1}{2}O_2(g) \longrightarrow \frac{1}{2}CO_2(g)$ (2) C graphite $+\frac{1}{2}O_2(g) \longrightarrow CO(g)$
(3) $CO(g) + \frac{1}{2}O_2(g) \longrightarrow CO_2(g)$ (4) $Mg(s) + \frac{1}{2}O_2(g) \longrightarrow MgO(s)$

Sol: [2]
$$C(g) + \frac{1}{2}O_2(g) \longrightarrow CO(g)$$

 $\Delta S^\circ = +ve$

- **45.** When Cl_2 gas reacts with hot and concentrated sodium hydroxide solution, the oxidation number of chlorine changes from
 - (1) Zero to + 1 and zero to -3
 - (3) Zero to -1 and zero to +5
- (2) Zero to +1 and zero to -5


(4) Zero -1 and zero to +3

Sol: [3] $Cl_2 + NaOH(hot conc.) \longrightarrow NaCl + NaClO₃$

In NaCl, oxidation no. of Cl is -1

and in ClO_3^- , oxidation no. of Cl is +5

46. Predict the products in the given reaction

For more question papers, please visit...

CBSE-2	ρ <u>12</u>	(Pre) <mark>Save P</mark>	aper Sa	ve Trees				Chemistry
47. W	Vhich	n one of the a	lkali metals	s, forms only, t	he normal o	xide, M ₂ O on hea	ting in ai	ir
(1	l) N	Na	(2)	Rb	(3)	Κ	(4)	Li
Sol: [4	i]]	$Li + O_2 \longrightarrow$	Li ₂ O					
		Other for	orms peroxi	ides and super	oxides also			
			U U		•	and exhibits para	0	
		5 0		$[Ni(NH_3)_6]^{2+}$	(3)	$[Zn(NH_3)_6]^{2+}$	(4)	$[Cr(NH_3)_6]^{3+}$
Sol: [2	2] [$Ni(NH_3)_6]^{2+}$		<i>a</i>				
		Here in	N_1^{2+} the co	onfiguration is				
			3d ⁸		$4s^0$	$4p^0$		$4d^0$
		$\uparrow \downarrow$	$\uparrow \downarrow \qquad \uparrow \downarrow$	↑ ↑				
						sp ³ d ² bybridiz	ed	
49. Si	ulph		-	er orbital octab	-	lex which is para	magnetic	;
	•	$H_2SO_4 + PCI$				$CaSO_4 + C^{\Delta}$	→	
		2 4	5			·		
(3	5)	$\operatorname{Fe}_2(\operatorname{SO}_4)_3$ —	\rightarrow		(4)	$S + H_2 SO_4 - \Delta$	\rightarrow	
Sol: [3	3] 1	$\operatorname{Fe}_{2}(\operatorname{SO}_{4})_{3}$ —	$\xrightarrow{\Delta} 3SO_3 + 1$	$\operatorname{Fe}_{2}O_{3}$				
50. St va	tanda apou	ard enthalpy risation of w	of vapouris ater at 100°	sation ∆ _{vap} H- fe °C (in kJ mol ⁻¹	or water at 1) is	100°C is 40.66 kJ	mol ⁻¹ . Th	he internal energy of
(1	l) +	-40.66	(2)	+37.56	(3)	-43.76	(4)	+43.76
Sol: [2	2]]	$H_2O(1) \longrightarrow$	$H_2O(g)$					
		V ₁ of lie	q. $H_2O = 18$	8 ml				
		and V_2	of H ₂ O (va	$np) = \frac{nRT}{P}$				

$$=\frac{1\times0.0821\times373}{1}=30.6233$$
 lit

$$\begin{split} \Delta V &= (30623.3 \text{ ml} - 18 \text{ ml}) \\ &= 30605.3 \text{ ml} = 30.605 \text{ lit} \\ \Delta E &= \Delta H - P \Delta V \\ &= 40.66 \times 10^3 \text{J} - 1 \times 30.605 \times 101.325 \text{ J} \\ &= 36557.9 = 37.5589 \text{ kJ mol}^{-1} \end{split}$$

ଇଙ୍କରଙ୍କ

For more question papers, please visit...

Print Less... Save Paper... Save Trees...

CBSE - 2012 (Pre)

51. Removal of introns and joining of exons in a defined order during transcription in called

BIOLOGY

	(1)	Splicing	(2)	Looping	(3)	Inducing	(4)	Slicing					
Ans	. [1]												
52.													
	(1)	1) Pneumonia pathogen infects alveoli whereas the common cold affects nose and respiratory passage but not the lungs											
		Pneumonia is a com						•					
	(3)	Pneumonia can be p no effective vaccine		nted by a live attenua	ted ba	acterial vaccine where	eas th	ne common cold has					
	(4)	Pneumonia is caused <i>influenzae</i>	d by a	a virus while the com	mon	cold is caused by the	bacte	erium Haemophilus					
Ans	. [1]												
53.	Whi	ich one of the followi	ng in	not a property of ca	incero	ous cells whereas the	rema	ining three are ?					
	(1)	They show contact i	nhibi	tion									
	(2)	They compete with	norm	al cells for vital nutr	ients								
	(3)	They do not remain	conf	ined in the area of fo	rmati	on							
	(4)	They divide in an un	cont	rolled manner									
Ans	. [1]												
54.		v many plants in the	<u> </u>			1	from	n an inflorescence?					
		nut, poppy, radish, fig	-			•							
	(1)	Three	(2)	Four	(3)	Five	(4)	Two					
Ans													
55.		organic substance th yme is	at ca	in withstand environ	iment	al extremes and can	not b	e degraded by any					
	(1)	Cellulose	(2)	Cuticle	(3)	Sporopollenin	(4)	Lignin					
Ans	. [3]												
56.	Bot	h, autogamy and geite	onoga	amy are prevented in									
	(1)	Maize	(2)	Papaya	(3)	Cucumber	(4)	Castor					
Ans	. [2]												
57.	Whi	ich part of the human	ear j	plays no role in heari	ing as	such but is otherwis	e ver	y much required ?					
	(1)	Ear ossicles			(2)	Eustachian tube							
	(3)	Organ of Corti			(4)	Vestibular apparatu	s						
Ans	. [4]												
58.	Wat	er containing cavities	in va	ascular bundles are for	ound	in							
	(1)	Pinus	(2)	Sunflower	(3)	Maize	(4)	Cycas					
Ans	. [3]												
59.	Whi	ich one of the following	ng is	a case of wrong mat	ching	g ?							
	(1)	Callus - Unorganise	d ma	ss of cells produced	in tiss	sue culture							
	(2)	Somatic hybridization	on - F	Fusion of two diverse	cells								
	(3)	Vector DNA - Site	for t-	RNA synthesis									
Afg	(4) r[3]	Micropropagation - pre question pape	In vit rs, p	ro production of plan Dease visit	nts in	large numbers www.eas	ybio	logyclass.com					

60. Which one out of A – D given below correctly represents the structural formula of the basic amino acid?

Α	В	С	D
$\begin{matrix} NH_2 \\ H - C - COOH \\ CH_2 \\ CH_2 \\ CH_2 \\ C \\ O \\ O \\ OH \end{matrix}$	$\begin{matrix} NH_2 \\ H - C - COOH \\ - CH_2 \\ OH \end{matrix}$	$CH_2OH \\ CH_2 \\ - CH_2 \\ - NH_2$	$\begin{matrix} NH_2\\ I - C - COOH\\ - CH_2\\ CH_2\\ CH_2\\ - CH_2\\ - CH_2\\ - CH_2\\ - NH_2\end{matrix}$

Options :

(1) B (2) C (3) D (4) A

Ans. (3)

61. A patient brought to a hospital with myocardial infarction is normally immediately given
(1) Statins
(2) Penicillin
(3) Streptokinase
(4) Cyclosporin–A

Ans. (3)

62. What is the figure given below showing in particular ?

					19	<u></u>		
					R.			
	(1)	Vasectomy	(2)	Ovarian cancer	(3)	Uterine cancer	(4)	Tubectomy
Ans	. [4]							
63.	Rib	osomal RNA is activ	ely sy	nthesized in				
	(1)	Ribosomes	(2)	Lysosomes	(3)	Nucleolus	(4)	Nucleoplasm
Ans	. (3)							
64.	Wh	ich one of the follow	ing de	bes not differ in E.c	oli and	d Chlamydomonas?		
	(1)	Cell membrane	-		(2)	Ribosomes		
	(3)	Chromosomal Orga	nizati	on	(4)	Cell wall		
Ans	. [1]	-						
65.	Wh	ich one is the most al	ounda	nt protein in the ani	mal w	orld?		
	(1)	Insulin	(2)	Trypsin	(3)	Haemoglobin	(4)	Collagen
Ans	. [4]					C		C
66.		sumption of which of	one of	the following food	s can	prevent the kind of I	olindn	less associated with
		min 'A' deficiency ?		0				
	(1)	Bt-Brinjal			(2)	'Flaver Savr' toma	to	
	(3)	Canolla			(4)	Golden rice		
Ans	~ /	ore question pape	orc •	loggo visit	. /		whio	logyclass com
ľU	, ,,,,	ne question pupe	:	neuse visit		www.eus	yDIU	logyclass.com

67. Which one of the following options gives one correct example each of convergent evolution and divergent evolution ?

	Convergent evolution	Divergent evolution
(1)	Thorns of Bougainvillia and	Eyes of Octopus and mammals
	tendrils of Cucurbita	
(2)	Eyes of octopus and mammals	Bones of forelimbs of vertebrates
(3)	Thorns of Bougainvillia and	Wings of butterflies and birds
	tendrils of Cucurbita	
(4)	Bones of forelimbs of	Wings of butterfly and birds
	vertebrates	

Ans. [2]

- 68. The gynoecium consists of many free pistils in flowers of
 - (1) Michelia (2) Aloe (3) Tomato (4) Papaver

Ans. [1]

- **69.** Evolution of different species in a given area starting from a point and spreading to other geographical areas is known as
 - (1) Divergent evolution (2) Adaptive radiation (3) Natural selection (4) Migration [2]

Ans. [2]

- 70. Which one of the following statements is false in respect of viability of mammalian sperm ?
 - (1) Sperms must be concentrated in a thick suspension
 - (2) Sperm is viable for only up to 24 hours
 - (3) Survival of sperm depends on the pH of the medium and is more active in alkaline medium
 - (4) Viability of sperm is determined by its motility

Ans. [2]

71. A single strand of nucleic acid tagged with a radioactive molecule is called

(1) Probe (2) Vector (3) Selectable marker (4) Plasmid

Ans. [1]

- 72. Measuring Biochemical Oxygen Demand (BOD) is a method used for
 - (1) Working out the efficiency of R.B.Cs. about their capacity to carry oxygen
 - (2) Estimating the amount of organic matter is sewage water
 - (3) Working out the efficiency of oil driven automobile engines
 - (4) Measuring the activity of Sacccharomyces cerevisae in producing curd on a commercial scale

Ans. [2]

- 73. Yeast is used in the production of
 - (1) Cheese and butter
 - (3) Lipase and pectinase

(2) Citric acid and lactic acid

(2) Birds stopped laying eggs

(4) Bread and beer

Ans. [4]

- 74. In an area where DDT had been used extensively, the population of birds declined significantly because
 - (1) Many of the birds eggs laid, did not hatch
 - (3) Earthworms in the area got eradicated

Ans. [1]

- 75. Pheretima and its close relatives derive nourishment from
 - (1) Small pieces of fresh fallen leaves of maize, etc
 - (2) Sugarcane roots
 - (3) Decaying fallen leaves and soil organic matter

For more question papers, please visit... Ans. (3) (4) Cobras were feeding exclusively on birds

CBSE-2012 (Pre) Save Paner Save Tree

- 76. People who have migrated from the planes to an area adjoining Rohtang Pass about six months back
 - (1) Have the usual RBC count but their haemoglobin has very high binding affinuty of O_2
 - (2) Have more RBCs and their haemoglobin has a lower binding affinity of O_{2}
 - (3) Are not physically fit to play games like football
 - (4) Suffer from altitude sickness with symptoms like nausea, fatigue, etc

Ans. [2]

- 77. Which one of the following is correctly matched ?
 - (1) Bakane of rice seedlings F.Skoog (2) Passive transport of nutrients – ATP
 - (3) Apoplast Plasmodesmata (4) Potassium – Readily immobilisation

Ans. [4]

78. Maximum nutritional diversity is found in the group (1) Plantae (2) Fungi (3) Animalia (4) Monera

Ans. [4]

79. Which one of the following is common to multicellular fungi, filamentous algae and protonema of mosses ?

- (1) Multiplication by fragmentation (2) Diplontic life cycle
- (3) Members of kingdom Plantae

Ans. [1]

80. In which one of the following options the two examples are correctly matched with their particular type of immunity?

	Examples	Type of immunity
(1)	Mucus coating of epithelium lining the urinogenital tract and	Physiological barriers
	the HCl in stomach	
(2)	Polymorpho-nuclear leukocytes and monocytes	Cellular barriers
(3)	Anti-tetanus and anti-snake bite injections	Active immunity
(4)	Saliva in mouth and Tears in	Physical barriers
	eyes	

Ans. [2]

81. Which one of the following pairs of hormones are the examples of those that can easily pass through the cell membrane of the target cell and bind to a receptor inside it (mostly in the nucleus)

- (1) Cortisol, testosterone
- (3) Thyroxin, Insulin

(2) Insulin, glucagon

(4) Mode of Nutrition

(4) Somatostatin, oxytocin

Ans. [1]

- **82.** Closed vascular bundles lack
 - (1) Pith (2) Ground tissue (3) Conjunctive tissue (4) Cambium
- Ans. [4]
- **83.** Which one of the following is **wrong** statement ?
 - (1) Nitrosomonas and Nitrobacter are chemoautotrophs
 - (2) Anabaena and Nostoc are capable of fixing nitrogen in free-living state also
 - (3) Root nodule forming nitrogen fixers live as aerobes under free-living conditions
 - Phosphorus is a constituent of cell membranes, certain nucleic acids and all proteins www.easybiologyclass.com

Ans. [4]

Please visit: *www.easybiologyclass.com* for:

- Lecture Notes
- Biology PPTs
- Biology MCQs
- Online Mock Tests (MCQ)
- Video Tutorials
- Practical Aids
- Model Question Papers of NET, GATE, DBT, ICMR Exams
- **CSIR NET Life Sciences Previous Year Question Papers**
- GATE Previous Year Question Papers
- > DBT BET JRF Previous Year Question Papers
- > ICMR JRF Entrance Exam Resources
- Jobs Notifications
- Higher Studies in Biology / Life Sciences
- Seminar / Workshop/ Conference Notifications
- > And many more....

Please subscribe our youtube channel: easybiologyclass <u>https://www.youtube.com/user/easybiologyclass/videos</u>

You can access more PDFs & PPTs from our **Slideshare** account http://www.slideshare.net/EasyBiologyClassEBC/

84. The figure below is the diagrammatic representation of the *E.Coli* vector pRB 322. Which one of the given options correctly identifies its certain component (s) ?

	-			EcoR I-Cla I H	ind III			
				Pvul	Plan			
				Pst I	-	-BamH I		
				amp*	tet"			
				pBR32	2			
				MA	H	R		
				ori				
					and the second s			
					V Pvu II			
	(1)	amp ^R , tet ^R - antibioti	c resist	tance genes	(2)	ori-original restricti	on enz	zyme
	(3)	rop-reduced osmotic	c press	ure	(4)	Hind III, EcoRI-se	lectab	le markers
Ans.	[1]							
85.	Whi	ich one of the followi	ng is a	correct statemen	nt?			
	(1)	Origin of seed habit	-					
	(2)	Pteridophyte gameto		-		afy stage		
	(3)	In gymnosperms fer		-				
	(4)	Antheridiophores an						
Ans.				8 1	I	I I I I J		
86.		al Test is carred out t	o test					
	(1)	Typhoid fever		Malaria	(3)	Diabetes mellitus	(4)	HIV/AIDS
Ans.		i jphona ie ver	(_) 1		(5)	Diabetes memitas	(.)	
87.		maximum amount o	of elect	rolytes and wate	er (70 -	- 80 percent) from t	the al	omerular filtrate is
07.		sorbed in which part		•	A (70	oo percent) nom	the gr	omerular mirate is
		Descending limb of		-	(2)	Ascending limb of I	loon	f Henle
	(1) (3)	Distal convoluted tu	-	I Heme	(2) (4)	Proximal convolute	-	
Ans.	` '	Distarconvoluted tu	ouic		(4)	I TOXIIIai COIIVOlute	utuot	iic.
88.		Test-tube Baby Prog	romme	amplove which	one of	the following technic	1110c 9	
00.						-	-	
	(1) (2)	Zygote intra fallopia			(2)	• •	-	•
Ana	(3)	Intra uterine insemi	lation ((101)	(4)	Gamete intra fallop	ian tra	ansier (GIFT)
Ans.			•		0			
89.		ich one of the followi	-	-		(1 1		
		Eutrophication is a manufacture of the formation		•				
		Most of the forests		-				
	(3)					imals		
	(4)	Greenhouse effect is	s a nat	ural phenomenon	1			
Ans.			·· • •• •	.1			c	
90.		tify the possible line		-			-	-
		Parrot	(2) H	Rabbit	(3)	Wolf	(4)	Cobra
Ans.								
91.		human hind brain co	-	-				
		Hypothalamus	(2) \$	Spinal cord	(3)	Corpus callosum	(4)	Cerebellum
Ans.								
92.		R and Restriction Fra	-	Length Polymorp	phism a			
	(1)	Genetic Fingerprinti	-		(2)	Study of enzymes		
	(3)	Genetic transformat	ion		(4)	DNA sequencing		
Ans.								
93.	Whi	ich one of the followin	ng area	as in India, is a h	otspot o	f biodiversity ?		
	· ·	Western Ghats	· ·	Eastern Ghats	(3)	Gangetic Plain	(4)	
A <mark>ko</mark> !	n m a	ore question pape	ers, ple	ease visit		www.eas	ybio	logyclass.com

CRS	E-20]	2 (Pre) Save Pape	r Sa	ve Trees				Biology
94.		llode is present in						
		Opuntia	(2)	Asparagus	(3)	Euphorbia	(4)	Australian Acacia
Ans	. [4]							
95.	The	highest number of	specie	s in the world is re	epresent	ed by		
	(1)	Lichens	(2)	Fungi	(3)	Mosses	(4)	Algae
Ans	. [2]			-				-
96.	Mo	tile zygote of Plasm	odium	occurs in				
	(1)	Human liver			(2)	Gut of female A	Anophele	25
	(3)	Salivary glands of	Anop	heles	(4)	Human RBCs	-	
Ans	. [2]		-					
97.		ect the correct state	nent re	egarding the specif	fic disor	der of muscular of	or skelet	al system
	(1)	Gout-inflammation	n of joi	ints due to extra de	position	of calcium		·
	(2)	Muscular dystrop	hy-age	related shortening	g of mu	iscles		
	(3)	Osteoporosis-decr	ease ii	n bone mass and h	nigher cl	hances of fracture	es with a	advancing age
	(4)	Myasthenia gravis			-			
Ans	. [3]					C	•	
98.	Vex	illary aestivation is	charac	teristic of the famil	ly			
	(1)	Brassicaceae	(2)	Fabaceae	(3)	Asteraceae	(4)	Solanaceae
Ans	. [2]						. ,	
99.	Giv	e below is the repres	entatio	on of a certain even	it at a pa	articular stage of a	type of	cell division. Which
		nis stage ?			•	C		
		C						
				₽Y_	Y	1		

- (1) Both prophase and metaphases of mitosis
- (2) Prophase I during meiosis
- (3) Prophase II during meiosis
- (4) Prophase of Mitosis

Ans. [2]

- **100.** Which statement is wrong for viruses ?
 - (1) Antibiotics have no effect on them
 - (2) All are parasites
 - (3) All of them have helical symmetry
 - (4) They have ability to synthesize nucleic acids and proteins

Ans. [3]

- **101.** The correct sequence of cell organelles during photorespiration is
 - (1) Chloroplast, -vacuole, -peroxisome
 - (2) Chloroplast,-Golgibodies,-mitochondria
 - (3) Chloroplast,-Rough Endoplasmic reticulum,-Dictyosomes
 - (4) Chloroplast,-mitochondria,-peroxisome

Ans. [4]

- 102. Which one of the following is an example of carrying out biological control of pests/diseases using microbes ?
 - (1) Lady bird beetle against aphids in mustard
 - (2) *Trichoderma* sp. against certain plant pathgens
 - (3) Nucleopolyhedrovirus against white rust in *Brassica*
 - (4) Bt-cotton to increase cotton yield

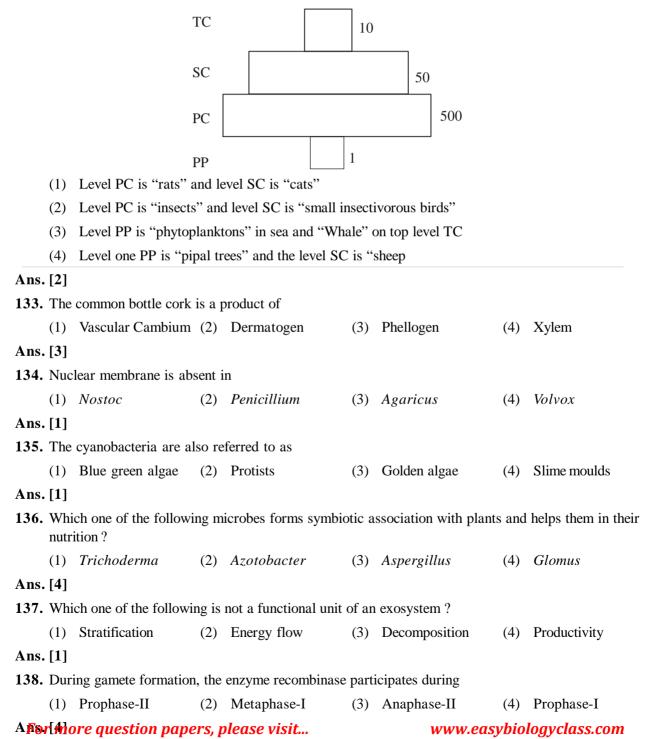
Appr^[2] ore question papers, please visit...

103.	shor		brow	1,00,000 to 40,000 y vs, retreating for hea osture was		•	-	
	(1)	Ramapithecus			(2)	Homo habilis		
	(3)	Neanderthal humar	ı		(4)	Cro-magnan huma	ans	
Ans.	[3]							
104.	colo			se father was colour first child as a daugh				
	(1)	50%	(2)	100%	(3)	Zero percent	(4)	25%
Ans.	[3]							
105.	Best	t defined function of	Mang	ganese in green plants	s is			
	(1)	Water absorption	(2)	Photolysis of water	(3)	Calving cycle	(4)	Nitrogen fixation
Ans.	[2]							
106.	Eve	n in absence of pollin	nating	agents seed-setting i	s ass	ured in		
	(1)	Fig	(2)	Commellina	(3)	Zostera	(4)	Salvia
Ans.	[2]							
107.	Wha	at was the most signif	icant	trend in the evolution	of mo	odern man (Homo sa	piens)	from his ancestors?
	(1)	Upright posture			(2)	Shortening of jaws	3	
	(3)	Binocular vision			(4)	Increasing cranial	capaci	ity
Ans.	[4]							
108.		most abundant prob biotics are the ones of	-	es helpful to humans prised as	s in r	narking curd from 1	milk a	nd in production of
	(1)	Heterotrophic bacto	eria		(2)	Cyanobacteria		
	(3)	Archaebacteria			(4)	Chemosynthetic au	utotrop	bhs
Ans.	[1]							
109.	-	U		om suddenly finds a s ppen in his neuro-hor		v	ening t	the door. Which one
	(1)	Sympathetic nervor cortex	us sys	stem is activated rele	easing	g epinephrin and no	orepine	phrin from adrenal
	(2)	Sympathetic nervor medulla	us sys	stem is activated rele	easing	g epinephrin and no	orepine	phrin from adrenal
	(3)	Neurotransmitters of	liffus	e rapidly across the c	left a	nd transmit a nerve	impul	se
	(4)	Hypothalamus activ	vates	the parasympathetic of	livisi	on of brain		
Ans.	[2]							
110.	Whi grou		ms or	the pair of organisms	is co	rrectly assigned to its	s or the	eir named taxonomic
	(1)	Nostoc and Anaba	<i>ena</i> a	re examples of protis	sta			
	(2)	Paramecium and P	lasmo	odium belong to the s	same	kingdom as that of	Penic	illium
	(3)	Lichen is a composi	te org	anism formed from th	e syr	nbiotic association o	of an al	gae and a protozoan
	(4)	Yeast used in making	ng bre	ead and beer is a fung	gus			

(4) reast used in making bread and beer is a fungus **For more question papers, please visit...**

CBSE-2012(Pre) Save Paper Save Trees

111. In a normal pregnant woman, the amount of to expected was	otal gonadotropin activity was assessed. The result				
(1) High level of circulating HCG to stimulate	-				
(2) High level of circulating FSH and LH in the	High level of circulating FSH and LH in the uterus to stimulate implantation of the embryo				
(3) High level of circulating HCG to stimulate e	High level of circulating HCG to stimulate endometrial thickening				
(4) High levels of FSH and LH in uterus to stin	-				
Ans. [1]	C				
112. Which part would be most suitable for raising vir	rus-free plants for micropropagation ?				
(1) Node (2) Bark	(3) Vascular tissue (4) Meristem				
Ans. [4]					
113. The Leydig cells as found in the human body as	re the secretory source of				
(1) Androgens (2) Progesterone	(3) Intestinal mucus (4) Glucagon				
Ans. [1]					
114. Which one of the following is not a part of a tran	1				
(1) The structural gene (2) The inducer	(3) A terminator (4) A promoter				
Ans. [2]					
115. Gymnosperms are also called soft wood sperma					
(1) Xylem fibres	(2) Cambium				
(3) Phloem fibres	(4) Thick-walled tracheids				
Ans. [4]					
116. <i>Cycas</i> and <i>Adiantum</i> resemble each other in have	ving				
(1) Vessels (2) Seeds	(3) Motile Sperms (4) Cambium				
Ans. [3]					
117. A certain road accident patient with unknown blo doctor friend at once offers his blood. What was					
(1) Blood group A (2) Blood group B	(3) Blood group AB (4) Blood group O				
Ans. [4]					
118. Compared to those of humans, the erythrocytes	in frog are				
(1) Nucleated and without haemoglobin	(2) Without nucleus but with haemoglobin				
(3) Nucleated and with haemoglobin	(4) Very much smaller and fewer				
Ans. [3]					
119. A nitrogen-fixing microbe associated with <i>Azolla</i>					
(1) Tolypothrix (2) Spirulina	(3) Anabaena (4) Frankia				
Ans. [3]					
120. What is correct to say about the hormone action	in humans ?				
(1) FSH stimulates the secretion of estrogen as	nd progesterone				
 (2) Glucagon is secreted by β-cells of Islets of (3) Secretion of thymosins is stimulated with ag 					
(4) If females, FSH first binds with specific rea	ceptors on ovarian cell membrane				
Ans. [4] For more question papers, please visit	www.easybiologyclass.com				


CBSE-2012	2 (Pre) <mark>Save Paper</mark>	Sa	ve Trees				Biology
121. Cym	nose inflorescence is	pres	ent in				
(1)	Brassica	(2)	Solanum	(3)	Sesbania	(4)	Trifolium
Ans. [2]							
122. Whi	ch one of the follow	ing is	correctly matched	?			
(1)	Yeast - Zoospores			(2)	Onion – Bulb		
(3)	Ginger – Sucker			(4)	Chlamydomonas	– Cor	vidia
Ans. [2]							
123. Wha	t is true about ribos	omes	?				
(1)	These are self - spl	icing	introns of some RI	NAs			
(2)	The prokaryotic rib	oson	nes are 80S, where	"S" sta	nds for sedimentation	on coe	fficient
(3)	These are compose	d of 1	ribonucleic acid and	d protei	ns		
(4)	These are found on	ly in	eukaryotic cells				
Ans. [3]							
124. A pr	ocess that makes in	nporta	ant difference betwe	een C_3	and C_4 plants is		
(1)	Photorespiration	(2)	Transpiration	(3)	Glycolysis	(4)	Photosynthesis
Ans. [1]							
125. Plac	entation in tomato a	nd lei	non is				
(1)	Axile	(2)	Parietal	(3)	Free central	(4)	Marginal
Ans. [1]							
	e strand of DNA has A strand sequence ?		nitrogenous base see	quence	as ATCTC, what we	ould be	the complementary
(1)	ATCGU	(2)	TTAGU	(3)	UAGAC	(4)	AACTG
Ans. [3]							
127. Selec	ct the correct staten	nent f	rom the following 1	regardii	ng cell membrane		
(1)	Fluid mosaic mode	l of c	ell membrane was p	propose	d by Singer and Nic	colson	
(2)	Na^+ and K^+ ions m	ove a	cross cell membrar	ne by pa	assive transport		
(3)	Proteins make up 6	i0 to '	70% of the cell me	mbrane			
(4)	Lipids are arranged	l in a	bilayer with polar l	heads to	owards the inner par	rt	
Ans. [1]							
128. For	transfomation, micro	o-part	ticles coated with D	ONA to	be bombarded with	gene g	gun are made up or
(1)	Gold or Tungsten	(2)	Silver or Platinum	n (3)	Platinum or Zinc	(4)	Silicon or Platinur
Ans. [1]							
129. Whi	ch one is a true stat	ement	t regarding DNA p	olymera	ase used in PCR?		
(1)	It remains active at	high	t temperature				
(2)	It is used to ligate i	ntrod	uced DNA in recipi	ient cell	ls		
(3)	It serves as a selec	table	marker				
(4)	It is isolated from a	virus	b				
Ans. [1]							
	upright pyramid of	numb	er is absent in				
	Grassland		Pond	(3)	Forest	(4)	Lake

For more question papers, please visit...

- 131. Signals for parturition originate from
 - (1) Fully developed foetus only
 - (2) Both placenta as well as fully developed foetus
 - (3) Oxytocin released from maternal pituitary
 - (4) Placenta only

Ans. [2]

132. Given below is an imaginary pyramid of numbers. What could be one of the possibilities about certain organisms at some of the different levels ?

CBSE-2012 (Pre) Save Paper Save Trees						Biology		
139. Anxiety and eating spicy food together in an otherwise normal human, may lead to								
(1)	Vomiting	(2)	Indigestion	(3)	Jaundice	(4)	Diarrhoea	L
Ans. [2]								
140. Removal of RNA polymerase III from nucleoplasm will affect the synthesis of								

(1) rRNA (2) tRNA (3) hnRNA (4) mRNA

Ans. [2]

141. In which one of the following, the genus name, its two characters and its phylum are not correctly matched, whereas the remaining three are correct ?

	Genus Name		Two Characters	Phylum	
(1)	Periplaneta	(a)	Jointed appendages	Arthropoda	
(1)	Γεπριαπεία	(b)	Chitinous exoskeleton	Artinopoda	
(2)	Pila	(a)	Body segmented	Mollusca	
(2)	1 110	(b)	Mouth with radula	Wionusea	
		(a)	Spiny Skinned		
(3)	Asterias	(b)	Water vascular	Echinodermata	
			system		
(4)	Sycon	(a)	Pore bearing	Porifera	
(1)	Sycon	(b)	Canal system	, i officiu	

Ans. [2]

142. F_2 generation in a Mendelian cross showed that both genotypic and phenotypic ratios are same as 1:2: 1. It represents a case of

- (1) Monohybrid cross with incomplete dominance
- (2) Co-dominance
- (3) Dihybrid cross
- (4) Monohybrid cross with complete dominance

Ans. [1]

143. Select the correct statement from the ones given below with respect to Periplaneta americana

- (1) Grinding of food is carried out only by the mouth parts
- (2) Nervous system located dorsally, consists of segmentally arranged ganglia joined by a pair of longitudinal connectives
- (3) Males bear a pair of short thread like anal styles
- (4) There are 16 very long Malpighian tubules present at the junctions of midgut and hindgut

Ans. [3]

144. Cirrhosis of liver is caused by the chronic intake of

- (1) Cocaine
- (3) Alcohol

AFormore question papers, please visit...

- (2) Opium
- (4) Tobacco (Chewing) *www.easybiologyclass.com*

145. Monascus purpureus is a yeast used commercially in the production of (1) Blood cholesterol lowering statins (2) Ethanol (3) Streptokinase for removing clots from the blood vessels (4) Citric acid Ans. [1] 146. The coconut water and the edible part of coconut are equivalent to (1) Embryo (2) Endosperm (3) Endocarp (4) Mesocarp Ans. [2] 147. Companion cells are closely associated with (1) Guard cells (2) Sieve elements (3) Vessel elements (4) Trichomes Ans. [2] **148.** Given below is the diagrammatic representation of one of the categories of small molecular weight organic compounds in the living tissues. Identify the category shown and the one blank component "X" in it Category Component "X" (1) Nucleoside Uracil HOCH₂ (2) Cholesterol Guanin (3) Amino acid NH, (4) Nucleotide Adenine Ans. [1] OH OH **149.** Which one of the following is not a gaseous biogeochemical cycle in ecosystem ? (1) Carbon cycle (2) Sulphur cycle (3) Phosphorus cycle (4) Nitrogen cycle Ans. [3] **150.** Which one of the following is the correct statement for respiration in humans? (1) About 90% of carbon dioxide (CO_2) is carried by haemoglobin as carbonino-haemoglobin (2) Cigarette smoking may lead to inflammation of bronchi (3) Neural signals from pneumotoxic centre in pons region of brain can increase the duration of

- (4) Workers in grinding and stone-breaking industries may suffer, from lung fibrosis.
- Ans. [4]

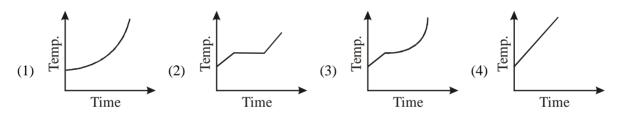
inspiration

છાલ્લજીલ્લ

For more question papers, please visit...

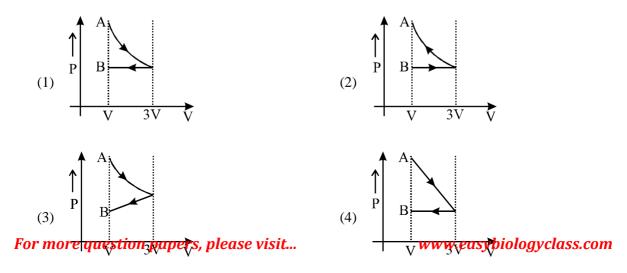
Print Less... Save Paper... Save Trees...

CBSE - 2012 (Pre)


PHYSICS

- **151.** In a CE transistor amplifier, the audio signal voltage across the collector resistance of 2 k Ω is 2V. If the base resistance is 1 k Ω and the current amplification of the transistor is 100, the input signal voltage is
 - (1) 10 mV (2) 0.1 V (3) 1.0 V (4) 1 mV

Sol: [1] $\frac{2}{V_i} = 100 \times \frac{2 \times 10^3}{10^3}$


 \Rightarrow V_i = 10 mV

- **152.** A coil of resistance 400 Ω is placed in a magnetic field. If the magnetic flux ϕ (wb) linked with the coil varies with time *t* (sec) as $\phi = 50 t^2 + 4$, the current in the coil at t = 2 sec is
 - (1) 1 A (2) 0.5 A (3) 0.1 A (4) 2 A
- Sol: [2] $|emf| = \frac{d\phi}{dt} = 100t$ at t = 2, emf = 200 V $\Rightarrow i = \frac{200}{400} = 0.5$ A
- **153.** Liquid oxygen at 50 K is heated to 300 K at constant pressure of 1 atm. The rate of heating is constant. Which one of the following graphs represents the variation of temperature with time?

Sol: [2] Factual

154. One mole of an ideal gas goes form an initial state A to final state B via two processes: It first undergoes isothermal expansion from volume V to 3V and then its volume is reduced from 3V to V at constant pressure. The correct P-V diagram representing the two processes is:

Sol: [1] Factual

- **155.** A solid cylinder of mass 3 kg is rolling on a horizontal surface with velocity 4 ms⁻¹. It collides with a horizontal spring of force constant 200 Nm⁻¹. The maximum compression produced in the spring will be
 - (1) 0.2 m (2) 0.5 m (3) 0.6 m (4) 0.7 m

Sol: [3]
$$\frac{1}{2} \times 3(4)^2 + \frac{1}{2} \times \frac{(3 \times R^2)}{2} \times \left(\frac{4}{R}\right)^2 = \frac{1}{2} Kx^2$$

 $\Rightarrow x = 0.6 \text{ m}$

- **156.** An electric dipole of moment 'p' is placed in an electric field of intensity 'E'. The dipole acquires a position such that the axis of the dipole makes an angle θ with the direction of the field. Assuming that the potential energy of the dipole to be zero when $\theta = 90^\circ$, the torque and the potential energy of the dipole will respectively be
 - (1) $pE\cos\theta$, $-pE\sin\theta$ (2) $pE\sin\theta$, $-pE\cos\theta$ (3) $pE\sin\theta$, $-2pE\cos\theta$ (4) $pE\sin\theta$, $2pE\cos\theta$
- **Sol:** [2] Potential energy = $-\vec{P}.\vec{E}$
- **157.** The horizontal range and the maximum height of a projectile are equal. The angle of projection of the projectile is

(1)
$$\theta = 45^{\circ}$$
 (2) $\theta = \tan^{-1}\left(\frac{1}{4}\right)$ (3) $\theta = \tan^{-1}(4)$ (4) $\theta = \tan^{-1}(2)$

Sol: [3] $\frac{u^2 \sin^2 \theta}{2g} = \frac{2u^2 \sin \theta \cos \theta}{g}$

 $\Rightarrow \tan \theta = 4 \Rightarrow \theta = \tan^{-1} (4)$

158. If the nuclear radius of ²⁷Al is 3.6 Fermi, the approximate nuclear radius of ⁶⁴Cu in Fermi is:

$$(1) \quad 3.6 \qquad (2) \quad 2.4 \qquad (3) \quad 1.2 \qquad (4) \quad 4.8$$

Sol: [4] $R \propto A^{1/3}$

$$\Rightarrow \left(\frac{3.6}{R}\right) = \left(\frac{27}{64}\right)^{1/3} = \frac{3}{4} \Rightarrow R = 4.8 \text{ F}$$

159. Two similar coils of radius R are lying concentrically with their planes at right angles to each other. The currents flowing in them are I and 2I, respectively. The resultant magnetic field induction at the centre will be

(1)
$$\frac{\mu_0 I}{R}$$
 (2) $\frac{\sqrt{5} \mu_0 I}{2R}$ (3) $\frac{3\mu_0 I}{2R}$ (4) $\frac{\mu_0 I}{2R}$

Sol: [2] $B = \sqrt{\left(\frac{\mu_0 I}{2R}\right) + \left(\frac{\mu_0 \times 2I}{2R}\right)^2} = \frac{\sqrt{5}\mu_0 I}{2R}$

- **160.** When a biconvex lens of glass having refractive index 1.47 is dipped in a liquid, it acts as a plane sheet of glass. This implies that the liquid must have refractive index
 - (1) less than that of glass
 - (3) less than one

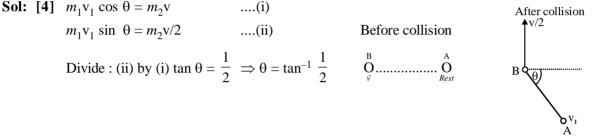
- (2) equal to that of glass
- (4) greater than that of glass

Short more question $\begin{pmatrix} \mu_{2} \\ p_{4} \\ \mu_{1} \end{pmatrix} \begin{pmatrix} \mu_{2} \\ p_{4} \\ R_{1} \\ R_{2} \end{pmatrix}$ lease visit...

CBSE-2012 (Pre) Save Paper Save Trees

161. Two ideal diodes are connected to a battery as shown in the circuit. The current supplied by the battery is

- (1) 0.5 A (2) 0.75 A
- (3) zero (4) 0.25 A


Sol: [1] D_1 is forward bias while D_2 is reverse bias

$$\Rightarrow i = \frac{5}{10} = 0.5 \text{ A}$$

162. Two spheres A and B of masses m_1 and m_2 respectively collide. A is at rest initially and B is moving with

velocity *v* along x-axis. After collision B has a velocity $\frac{v}{2}$ in a direction perpendicular to the original direction. The mass A moves after collision in the direction

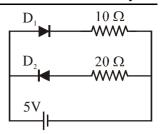
- (1) $\theta = \tan^{-1}(-\frac{1}{2})$ to the x-axis (2) same as that of B
- (3) opposite to that of B (4) $\theta = \tan^{-1}(\frac{1}{2})$ to the x-axis

163. A particle has initial velocity $(2\vec{i}+3\vec{j})$ and acceleration $(0.3\vec{i}+0.2\vec{j})$. The magnitude of velocity after 10 seconds will be

(1) 9 units (2) $9\sqrt{2}$ units (3) $5\sqrt{2}$ units (4) 5 units

Sol: [3] $\vec{v} = \vec{u} \perp \vec{a}t$

$$= (2\hat{i} + 3\hat{j}) + (0.3\hat{i} + 0.2\hat{j}) \times 10$$
$$= (5\hat{i} + 5\hat{j})$$
$$\Rightarrow |\vec{v}| = 5\sqrt{2} \text{ units}$$

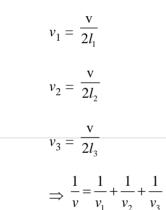

164. The height which the weight of a body becomes 1/16th, its weight on the surface of earth (radius R) is

(1) 4 R (2) 5 R (3) 15 R (4) 3 R

Sol: [4] $\frac{g}{16} = \frac{g}{\left(1 + \frac{h}{R}\right)^2}$ $\Rightarrow \left(1 + \frac{h}{R}\right) = 4$ (h = 3R)

165. Four point charges -Q, -q, 2q and 2Q are placed, one at each corner of the square. The relation between Q and q for which the potential at the centre of the square is zero is

(1)
$$Q = \frac{1}{q}$$
 (2) $Q = -q$ (3) $Q = -\frac{1}{q}$ (4) $Q = q$
For more question papers, please visit... (3) $Q = -\frac{1}{q}$ www.easybiologyclass.com



Sol: [2]	$O = \frac{k(-Q)}{x} + \frac{k(-q)}{x} + \frac{k(2q)}{x} + \frac{k(2Q)}{x}$	-Q
	\Rightarrow Q + q = 0	
	\Rightarrow Q = -q	2Q

166. When a string is divided into three segments of length l_1 , l_2 and l_3 , the fundamental frequencies of these three segments are v_1 , v_2 and v_3 respectively. The original fundamental frequency (v) of the string is

(1)
$$\frac{1}{\sqrt{v}} = \frac{1}{\sqrt{v_1}} + \frac{1}{\sqrt{v_2}} + \frac{1}{\sqrt{v_3}}$$

(2) $\sqrt{v} = \sqrt{v_1} + \sqrt{v_2} + \sqrt{v_3}$
(3) $v = v_1 + v_2 + v_3$
(4) $\frac{1}{v} = \frac{1}{v_1} + \frac{1}{v_2} + \frac{1}{v_3}$

Sol: [4]
$$v = \frac{v}{2l}$$

167. A ring is made of a wire having a resistance $R_0 = 12 \Omega$. Find the points A and B, as shown in the figure, at which a current carrying conductor should be connected so that the resistance R of the sub circuit

	betw	veen these points is e	qual ($\cos \frac{8}{3}\Omega$			
	(1)	$\frac{l_1}{l_2} = \frac{1}{2}$	(2)	$\frac{l_1}{l_2} = \frac{5}{8}$			
	(3)	$\frac{l_1}{l_2} = \frac{1}{3}$	(4)	$\frac{l_1}{l_2} = \frac{3}{8}$			
Sol:	[1]	$\left(\frac{A}{\rho l_1} + \frac{A}{\rho l_2}\right) = \frac{3}{8}$		(i)			
		$\frac{\rho(l_1+l_2)}{A} = 12$		(ii)			
		Solving $\frac{l_1}{l_2} = \frac{1}{2}$					
For more question papers, please visit							

168. A geostationary satellite is orbiting the earth at a height of 5R above the surface of the earth, R being the radius of the earth. The time period of another satellite in hours at a height of 2R from the surface of the earth is

(1)
$$\frac{6}{\sqrt{2}}$$
 (2) 5 (3) 10 (4) $6\sqrt{2}$
Sol: [4] \therefore $T^2 \propto r^3$

$$\Rightarrow \quad \left(\frac{24}{T}\right) = \left(\frac{6R}{3R}\right)^{3/2}$$
$$\frac{24}{T} = 2\sqrt{2}$$
$$T = 6\sqrt{2}$$

169. ABC is an equilateral triangle with O as its centre. $\vec{F_1}, \vec{F_2}$ and $\vec{F_3}$ represent three forces acting along the sides AB, BC and AC respectively. If the total torque about O is zero then the magnitude of $\vec{F_3}$ is (1) $2(F_1 + F_2)$ (2) $F_1 + F_2$ (3) $F_1 - F_2$ (4) $\frac{F_1 + F_2}{2}$ **Sol:** [2] $F_2 \times x - F_3 \times x + F_1 \times x = 0$ $F_3 = F_1 + F_2$

170. If the radius of a star is R and it acts as a black body, what would be the temperature of the star, in which the rate of energy production is Q?

(1)
$$\left(\frac{Q}{4\pi R^2 \sigma}\right)^{1/4}$$
 (2) $\frac{Q}{4\pi R^2 \sigma}$ (3) $\left(\frac{Q}{4\pi R^2 \sigma}\right)^{-1/2}$ (4) $\left(4\pi R^2 Q/\sigma\right)^{1/4}$

(σ stands for Stefan's constant)

Sol: [1] $Q = 4\pi R^2 \sigma T^4$

$$\Rightarrow \quad \mathbf{T} = \left(\frac{Q}{4\pi R^2 \sigma}\right)^{1/4}$$

171. When a mass is rotating in a plane about a fixed point, its angular momentum is directed along:

- (1) the tangent to the orbit
- (2) a line perpendicular to the plane of rotation
- (3) the line making an angle of 45° to the plane of rotation
- (4) the radius

Sdlor[2]oFaquedstion papers, please visit...

172. Two sources of sound placed close to each other, are emitting progressive waves given by

- $y_1 = 4 \sin 600 \pi t$ and $y_2 = 5 \sin 608 \pi t$. An observer located near these two sources of sound will hear:
- (1) 4 beats per second with intensity ratio 81 : 1 between waxing and waning
- (2) 4 beats per second with intensity ratio 25 : 16 between waxing and waning
- (3) 8 beats per second with intensity ratio 25 : 16 between waxing and waning
- (4) 8 beats per second with intensity ratio 81 : 1 between waxing and waning

Sol: [1]
$$\frac{I_1}{I_2} = \frac{(A_1 + A_2)^2}{(A_1 - A_2)^2} = \frac{81}{1}$$

Beat frequency = 304 - 300 = 4 Hz.

- **173.** A car of mass 1000 kg negotiates a banked curve of radius 90 m on a frictionless road. If the banking angle is 45° , the speed of the car is
 - (1) 10 ms^{-1} (3) 30 ms^{-1} (4) 5 ms^{-1} (2) 20 ms^{-1}

Sol: [3]
$$\tan \theta = \frac{v^2}{rg} \implies v = \sqrt{90 \times 10 \times \tan 45^\circ} = 30 \text{ m/sec}$$

174. The magnifying power of a telescope is 9. When it is adjusted for parallel rays the distance between the objective and eyepiece is 20 cm. The focal length of lenses are

Sol: [4]
$$f_0 + f_e = 20$$
 ... (i)

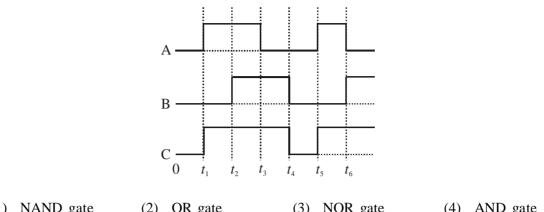
$$\left|\frac{f_0}{f_e}\right| = a \qquad \dots \text{ (ii)}$$
Solving, $f_0 = 18 \text{ cm}$

Solving,

$$f_e = 2 \text{ cm}$$

175. What is the flux through a cube of side 'a' if a point charge of q is at one of its corner?

(1)
$$\frac{q}{2\epsilon_0}6a^2$$
 (2) $\frac{2q}{\epsilon_0}$ (3) $\frac{q}{8\epsilon_0}$ (4) $\frac{q}{\epsilon_0}$


Sol: [3] Application of Gauss's theorem

- **176.** An α -particle moves in a circular path of radius 0.83 cm in the presence of a magnetic field of 0.25 Wb/m². The de Broglie wavelength associated with the particle will be
 - (1) 0.01 Å (2) 1 Å(3) 0.1 Å (4) 10 Å

Sol: [1] $0.83 \times 10^2 = \left(\frac{P}{2eB}\right)$... (i)

$$\lambda = \frac{h}{p} = \left(\frac{6.6 \times 10^{-34}}{0.83 \times 10^{-2} \times 2 \times 1.6 \times 10^{-19} \times 0.25}\right) = 9.94 \times 10^{-13} m \approx 0.01 \text{ Å}$$

For more question papers, please visit... www.easybiologyclass.com

177. The figure shows a logic circuit with two inputs A and B and the output C. The voltage wave forms across A, B and C are as given. The logic circuit gate is

			_
А	В	С	
0	0	0	
1	0	1	
0	1	1	
1	1	1	or Gate

178. A compass needle which is allowed to move in a horizontal plane is taken to a geomagnetic pole. It:

- (1) will stay in east-west direction only (2) will become rigid showing no movement
- (3) will stay in any position (4) will stay in north-south direction only
- Sol: [2] Magnetic field is vertical at poles.

Sol:

179. A spherical planet has a mass M_p and diameter D_p. A particle of mass m falling freely near the surface of this planet will experience an acceleration due to gravity, equal to

(1)
$$4 \operatorname{GM}_{p} \operatorname{m} / \operatorname{D}_{p}^{2}$$
 (2) $4 \operatorname{GM}_{p} / \operatorname{D}_{p}^{2}$ (3) $\operatorname{GM}_{p} \operatorname{m} / \operatorname{D}_{p}^{2}$ (4) $\operatorname{GM}_{p} / \operatorname{D}_{p}^{2}$
[2] $g = \frac{GM_{p}}{R^{2}} = \frac{GM_{p}}{(D_{p/2})^{2}} = \frac{4GM_{p}}{D_{p}^{2}}$

180. A 200 W sodium street lamp emits yellow light of wavelength 0.6 μm. Assuming it to be 25% efficient in converting electrical energy to light, the number of photons of yellow light it emits per second is

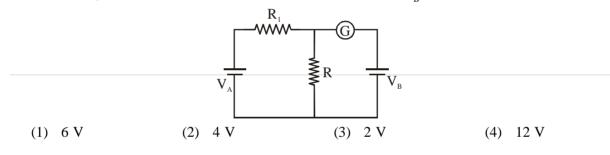
(1)
$$3 \times 10^{19}$$
 (2) 1.5×10^{20} (3) 6×10^{18} (4) 62×10^{20}

Sol: [2] Energy emitted = $200 \times \frac{25}{100} = 50 \text{ W} = 50 \text{ J/sec}.$

No. of photons =
$$\frac{50 \times 0.6 \times 10^{-6}}{6.6 \times 10^{-34} \times 3 \times 10^{8}} = 1.5 \times 10^{20}$$

- **181.** The potential energy of a particle in a force field is: $U = \frac{A}{r^2} \frac{B}{r}$, where A and B are positive constants and *r* is the distance of particle from the centre of the field. For stable equilibrium the distance of the particle is
 - (1) B/A (2) B/2A (3) 2A/B (4) A/B (4)

$$\Rightarrow$$
 $r = \frac{2A}{B}$


182. An electrons of a stationary hydrogen atom passes from the fifth energy level to the ground level. The velocity that the atom acquired as a result of photon emission will be

(1)
$$\frac{24m}{25hR}$$
 (2) $\frac{24hR}{25m}$ (3) $\frac{25hR}{24m}$ (4) $\frac{25m}{24hR}$

(*m* is the mass of the electron, *R*, Rydberg constant and *h*, Planck's constant)

Sol: [2] Momentum of atom,
$$P = \left(\frac{\Delta E}{C}\right)$$

Velocity of H₂ atom = $\left(\frac{P}{m}\right) = \frac{\Delta E}{mc} = \frac{hcR}{mc} \left(1 - \frac{1}{25}\right) = \frac{h \times R}{m} \left(\frac{24}{25}\right) = \left(\frac{24h \times R}{25m}\right)$

183. In the circuit shown the cells A and B have negligible resistances. For $V_A = 12V$, $R_1 = 500 \Omega$ and $R = 100 \Omega$ the galvanometer (G) shows no deflection. The value of V_B is

Sol: [3] $i = \frac{12}{600} = \frac{1}{50}A$

P.D. across,
$$R = 100 \ \Omega = 100 \times \frac{1}{50} = 2 \text{ volt}$$

184. Monochromatic radiation emitted when electron on hydrogen atom jumps from first excited to the ground state irradiates a photosensitive material. The stopping potential is measured to be 3.57 V. The threshold frequency of the material is

(1)
$$2.5 \times 10^{15} \text{ Hz}$$
 (2) $4 \times 10^{15} \text{ Hz}$ (3) $5 \times 10^{15} \text{ Hz}$ (4) $1.6 \times 10^{15} \text{ Hz}$
Sol: [4] $1.6 \times 10^{-19} \times 3.75 = 13.6 \times 1.6 \times 10^{-19} \left(1 - \frac{1}{4}\right) - 6.6 \times 10^{-34} v_{\text{Th}}$
Solving, $v_{\text{Th}} = 1.6 \times 10^{15} \text{ Hz}$

185. A mixture consists of two radioactive materials A_1 and A_2 with half lives of 20 s and 10 s respectively. Initially the mixture has 40 g of A_1 and 160 g of A_2 . The amount of the two in the mixture will become equal after

(1) 40 s (2) 60 s (3) 80 s (4) 20 s

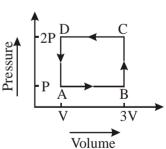
$$40 \longrightarrow 20 \longrightarrow 10$$

Sol: [1] $160 \longrightarrow 80 \longrightarrow 40 \longrightarrow 10$ For more question papers, please visit... t = 40 sec.

- **186.** If voltage across a bulb rated 220 Volt-100 Watt drops by 2.5% of its rated value, the percentage of the rated value by which the power would decrease is (1) 10% (2) 20% (3) 2.5% (4) 5% **Sol:** [4] $P = \frac{V^2}{R}$ $100 \times \frac{\Delta P}{P} = 2\frac{\Delta V}{V} \times 100 = 2 \times 2.5 = 5\%$ **187.** Transfer characteristics [output voltage(V₀) vs input voltage (V₁)] for a base biased transistor in CE configuration is as shown in the figure. For using transistor as a switch, it is used (1) in region I (2) in region III
 - (3) both in region (I) and (III) (4) in region II
- Sol: [3] Factual
- **188.** C and Si both have same lattice structure, having 4 bonding electrons in each. However, C is insulator where as Si is intrinsic semiconductor. This is because
 - (1) The four bonding electrons in the case of C lie in the third orbit, whereas for Si they lie in the fourth orbit
 - (2) In case of C the valance band is not completely filled at absolute zero temperature
 - (3) In case of C the conduction band is partly filled even at absolute zero temperature
 - (4) The four bonding electrons in the case of C lie in the second orbit, whereas in the case of Si they lie in the third

Sol: [4] Factual

- **189.** Two persons of masses 55 kg and 65 kg respectively, are at the opposite ends of a boat. The length of the boat is 3.0 m and weighs 100 kg. The 55 kg man walks up to the 65 kg man and sits with him. If the boat is in still water the centre of mass of the system shifts by
 - (1) 0.75 m (2) 3.0 m (3) 2.3 m
- **Sol:** [4] There is no external force.
- **190.** A thermodynamic system is taken through the cycle ABCD as shown in figure. Heat rejected by the gas during the cycle is
 - (1) PV (2) 2 PV
 - (3) 4 PV (4) ¹/₂ PV
- **Sol:** [2] W = -2PV
 - $\begin{array}{ll} \because & Q = W + \Delta E \\ \Rightarrow & O = -2PV \end{array}$
- **191.** The motion of a particle along a straight line is described by equation:


 $x = 8 + 12t - t^3$ where x is in metre and t in second. The retardation of the particle when its velocity becomes zero, is

(1) 12 ms^{-2} (2) 24 ms^{-2} (3) zero (4) 6 ms^{-2}

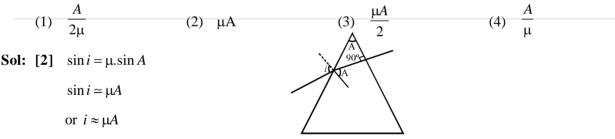
Sol: [1]
$$v = \frac{dv}{dt} = 12 - 3t^2 = 0 \implies t = 2 \text{ sec.}$$

For more question paper for please visit... dt^2

www.easybiologyclass.com

zero

(4)


192. A concave mirror of focal length f_1 is placed at a distance of d from a convex lens of focal length f_2 . A beam of light coming from infinity and falling on this convex lens-concave mirror combination returns to infinity. The distance 'd' must equal

(1)
$$-2f_1 + f_2$$
 (2) $f_1 + f_2$ (3) $-f_1 + f_2$ (4) $2f_1 + f_2$

- **Sol:** [4] $d = (f_2 + 2f_1)$
- **193.** A milli voltmeter of 25 milli volt range is to be converted into an ammeter of 25 ampere range. The value (in ohm) of necessary shunt will be

(1) 0.05 (2) 0.001 (3) 0.01 (4) 1
Sol: [2]
$$i_g = \left(\frac{25 \times 10^{-3}}{R_g}\right)$$

 $R = \frac{i_g R_g}{i - i_g} = \frac{25 \times 10^{-3}}{25} = 10^{-3} \Omega$

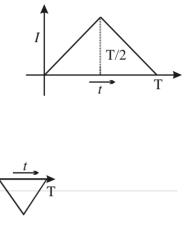
- **194.** The damping force on an oscillator is directly proportional to the velocity. The units of the constant of proportionality are
 - (1) kgs (2) $kgms^{-1}$ (3) $kgms^{-2}$ (4) kgs^{-1}
- **Sol:** [4] F = -kv
- **195.** A ray of light is incident at an angle of incidence, *i* on one face of a prism of angle A (assumed to be small) and emerges normally from the opposite face. If the refractive index of the prism is μ , the angle of incidence *i*, is nearly equal to

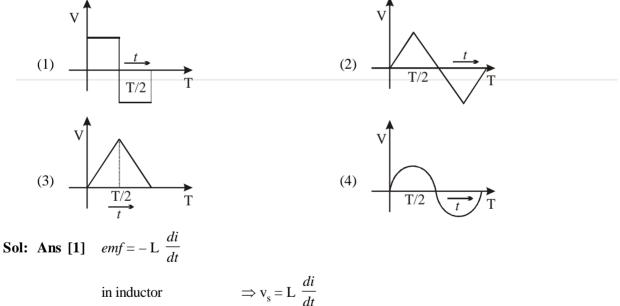
196. Electron in hydrogen atom first jumps from third excited state to second excited state and then from second excited to the first excited state. The ratio of the wavelengths $\lambda_1 : \lambda_2$ emitted in the two cases is

(1)
$$\frac{20}{7}$$
 (2) $\frac{7}{5}$ (3) $\frac{27}{20}$ (4) $\frac{27}{5}$
Sol: [1] $\frac{1}{\lambda_1} = R\left(\frac{1}{9} - \frac{1}{10}\right) = \frac{7R}{9 \times 16}$
 $\frac{1}{\lambda_2} = R\left(\frac{1}{4} - \frac{1}{9}\right) = \frac{5R}{36}$
 $\Rightarrow \frac{\lambda_1}{\lambda_2} = \frac{20}{7}$
197. The electric field associated with an e.m. wave in vacuum is given by $\vec{F} = \hat{i} 40 \cos(k)$

197. The electric field associated with an e.m. wave in vacuum is given by $\vec{E} = \hat{i} 40 \cos(kz - 6 \times 10^{-8}t)$, where *E*, *z* and *t* are in volt/m, meter and seconds respectively. The value of wave vector *k* is

(1) 3 m^{-1} (2) 2 m^{-1} (3) 0.5 m^{-1} (4) 6 m^{-1}


Solor[2] o New magnetic my paper $\delta_{k} = 0$ k k = 2 m/sec www.easybiologyclass.com


198. An alternating electric field, of frequency v, is applied across the dees (radius = R) of a cyclotron that is being used to accelerate protons (mass = m). The operating magnetic field (B) used in the cyclotron and the kinetic energy (K) of the proton beam, produced by it, are given by

(1)
$$B = \frac{mv}{e}$$
 and $K = m^2 \pi v R^2$
(2) $B = \frac{mv}{e}$ and $K = 2m \pi^2 v^2 R^2$
(3) $B = \frac{2\pi mv}{e}$ and $K = m^2 \pi v R^2$
(4) $B = \frac{2\pi mv}{e}$ and $K = 2m \pi^2 v^2 R^2$

Sol: [4]
$$v = \left(\frac{eB}{2\pi m}\right)$$
 ... (i)
 $\frac{\sqrt{2mk}}{eB} = R \implies k = \left(\frac{R^2 e^2 B^2}{2m}\right) = 2m\pi^2 v^2 R^2$

199. The current (I) in the inductance is varying with time according to the plot shown in figure. Which one of the following is the correct variation of voltage with time in the coil?

200. In an electrical circuit R, L, C and an a.c voltage source are all connected in series. When L is removed from the circuit, the phase difference between the voltage and the current in the circuit is $\pi/3$. If instead, C is removed from the circuit, the phase difference is again $\pi/3$. The power factor of the circuit is

(1)
$$\frac{\sqrt{3}}{2}$$
 (2) $\frac{1}{2}$ (3) $\frac{1}{\sqrt{2}}$ (4) 1

Sol: Ans [4] Circuit is at resonance

$$\therefore x_{\rm L} = x_{\rm C}$$
$$\Rightarrow \cos \phi = 1$$

ଇପ୍ଟରେପ

For more question papers, please visit...

Please visit: *www.easybiologyclass.com* for:

- Lecture Notes
- Biology PPTs
- Biology MCQs
- Online Mock Tests (MCQ)
- Video Tutorials
- Practical Aids
- Model Question Papers of NET, GATE, DBT, ICMR Exams
- **CSIR NET Life Sciences Previous Year Question Papers**
- GATE Previous Year Question Papers
- > DBT BET JRF Previous Year Question Papers
- > ICMR JRF Entrance Exam Resources
- Jobs Notifications
- Higher Studies in Biology / Life Sciences
- Seminar / Workshop/ Conference Notifications
- > And many more....

Please subscribe our youtube channel: easybiologyclass <u>https://www.youtube.com/user/easybiologyclass/videos</u>

You can access more PDFs & PPTs from our **Slideshare** account http://www.slideshare.net/EasyBiologyClassEBC/

