

Previous Year Solved Question Paper of

G.A.T.E. (XL) 2005

LIFE SCIENCES

XL: Chemistry

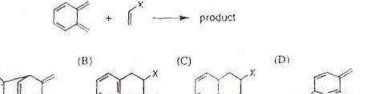
Examination

(Original Question Paper with Answer Key)
GRADUATE APTITUDE TEST IN ENGINEERING

Section H: Chemistry (Compulsory)

[Useful data: $F = 96485 \text{ C mol}^{-1}$; $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$; Atomic number: Co. 27.]

		Q.1 - Q.10 carry	one mark each.			
Q.1 =	Elements exhibiting +2 oxidation state in their compounds is:					
	(A) Zn and P	(B) Ca and Al	(C) Al and P	(D) Zn and Ca		
Q.2	The paramagnetic species is:					
	(A) Na ₂	(B) NO+	(C) CN	(D) CO		
Q.3	Hydride that readily liberates hydrogen gas on reaction with water is:					
	(A) NaBH4	(B) CaH ₂	(C) SiH₄	(D) NH ₃		
Q.4	Which one of the following is aromatic?					
	(A)	(B)	(C)	(D)		
Q.5	Identify the product of the following reaction.					
	6	COOH NH, NO NOF, CO				
	Į.					
	(A)	(В)	(C)	(D) coon		
	O,	Oyn Com	, , ,	, COCF,		
Q.é	Which one of the following is most acidic?					
	(A) Butanoic acid		(B) 3-Chlorobutar	noic scid		
	(C) 2-Chlorobutan	nic acid	(D) 4-Chlorobutau			
Q .7	Total number of stereoisomers possible in CHy-CH(Ph)-CH=CHCH; is:					


(C) 3 (D) 4

(A) 1

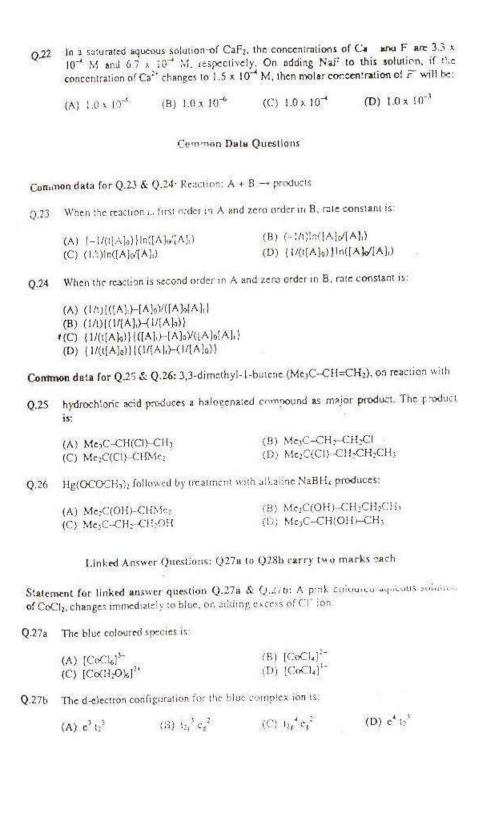
(B) 2

2.8	The standard EMF of the cell, set up from the reaction $2Cu^*(aq) \rightarrow Cu(\epsilon) + Cu^{2\epsilon}(aq)$ is 0.36 V at 298 K . The standard Gibbs free energy in kJ/mol for this reaction is:					
	(A) -34.73	(B) -69.46	. (C) -3473	(D) -6946		
b.9	Heisenberg's uncertainty principle is expressed as:					
	(A) $\Delta p \Delta x \ge \hbar/2\pi$		(B) Δρ Δx ≤t/4			
	(C) $\Delta p \Delta x \le \hbar \sqrt{2} \pi$		(D) $\Delta p \Delta x \ge h/4$			
€Q.10	For the reaction, $C_0H_{12}O_0(r)+6O_2(g)\rightarrow 6CO_2(g)+6H_2O(l)$, $\Delta U=-2810$ kJ/mol, $\Delta E=-2810$ kJ/mol is:					
W (Si	(A) 845	(B) -890	(C) -2810	(D) -2864		
				8		
		Q.11 - Q.26 carr	y two marks each.			
10	ADVE CONTRACT	BPI-rectofolyton has been be suppressed as	Construction of the second of			
Q.11	Which one of the following is a repeating unit of silicone?					
	(A) Si(CH ₁) ₄		(B) Si(CH ₃) ₂ O			
	(C) SiO2		(D) Si(OCH ₃) ₄			
Q.12	The under of lattice energy of NaX is NaI < NaBr < NaCl < NaF. The property of X/X' , responsible for the trend is:					
	(A) ionic radii		(B) electronegati	vity		
Œ	(C) atomic radii		(D) electron affin	7		
Q.13	Among BF ₃ , CF ₄ , PF ₃ , and GF $_2$, the molecules that are expected to have a zero dipole moment is:					
	(A) OF, and CF.		(B) BF ₃ and PF ₃			
	(C) OF ₂ and PF ₃		(D) BF ₃ and CF ₄			
Q 14	Air oxidation of sodium metal produces a hygroscopic compound 'X', which reacts with CO ₂ to produce 'Y'. X and Y respectively are:					
	(A) Na ₂ Ch and Na ₂ C	O.	(E) NajO and Na	HCO ₃		
	(C) NaOH and Naz		(D) Na ₂ O and Na	**************************************		
Q.15	The product of reaction of HNO ₁ with P ₄ and P ₄ O ₁₀ respectively are:					
	(A) N ₂ O ₃ and N ₂ O ₃		(B) N ₂ O ₅ and NO	ų.		
	(C) NO_2 and N_2O_3		(D) NO and NO $_2$			

Q.16 identify the product for the following Diels-Alder reaction.

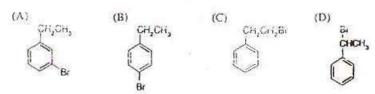
Q 17 Major product of reaction given below is:

- Q.18 0.050 mol of Ar initially at 25 °C, expands adiabatically and reversibly from 0.50 L to 1.00 L (C_{*,m} for Ar is 12.48 J/Kmol). The work done in this process is:
 - (A) 117 J

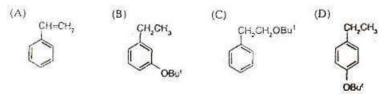

(A)

- (B) -69 J
- (C) -138 J
- (D) -1378 J
- Q.19 Efficiency of a reversible cyclic heat engine working between T_c and T_h is:
 - $(A) -T_c/T_k$

(B) $(T_c - T_h)/T_h$


(C) $(T_h - T_c)/T_h$

- (D) T./Th
- Q.20 To prepare one liter of an acetate buffer of 0.1 ionic strength and pH 5, at 25 °C, the moles of sodium acetate and acetic acid (dissociation constant = 2.69 x 10⁻⁵) to be added respectively are:
 - (A) 0.1 and 6.6572
 - (B) 0.0372 and 0.1
 - -(C) 0.01 and 0.372
 - (D) 0.372 and 0.01
- Q.21 The EMF of the cell (Pt,H₂(1 atm)|HCl(aq)|AgCl,Ag) is 0.332 V and the EMF of AgCl|Ag electrode is 0.277 V. pH of the solution is:
 - (A) 0.926
- (B) 1.03
- (C) 3.26
- (D) 5.61



Statement for linked answer question Q.28a & Q.28b: Ethylbenzene reacts with,

Q:28a N-bromosuccinimide to produce a compound 'X', X is:

Q.28b X' on treatment with r-BuOK in hutanul provides 'Y'. The product Y is:

Please visit: www.easybiologyclass.com for:

- Lecture Notes
- Biology PPTs
- Biology MCQs
- Online Mock Tests (MCQ)
- Video Tutorials
- Practical Aids
- ➤ Model Question Papers of NET, GATE, DBT, ICMR Exams
- ➤ CSIR NET Life Sciences Previous Year Question Papers
- GATE Previous Year Question Papers
- ➤ DBT BET JRF Previous Year Question Papers
- ➤ ICMR JRF Entrance Exam Resources
- > Jobs Notifications
- ➤ Higher Studies in Biology / Life Sciences
- Seminar / Workshop/ Conference Notifications
- > And many more....

Please subscribe our **youtube** channel: **easybiologyclass** https://www.youtube.com/user/easybiologyclass/videos

You can access more PDFs & PPTs from our **Slideshare** account http://www.slideshare.net/EasyBiologyClassEBC/

