

Previous Year Solved Question Paper of

G.A.T.E. (XL) 2003

LIFE SCIENCES

XL: Chemistry

Examination

(Original Question Paper with Answer Key)
GRADUATE APTITUDE TEST IN ENGINEERING

I: Chemistry (Compulsory)

[Useful data: Planck's constant, $h = 6.63 \times 10^{-34} \, Js$, Mass of electron = $9.1 \times 10^{-31} \, kg$; Rydberg constant = $109677 \, cm^{-1}$; $\pi = 3.142$]

Q.1 - 10 carry one mark each

Q.1	In ice, each oxygen atom of water molecule is						
	 (A) bonded only covalently to two hydrogen atoms (B) bonded covalently to two hydrogen atoms and hydrogen-bonded to two other hydrogen atoms 						
	(C) (D)	C) hydrogen-bonded to four hydrogen atoms					
Q.2	I ₂ exists in the solid form under normal temperature and pressure. The principal intermolecular forces holding together iodine molecules in solid is						
	(A)	covalent	(B)	metallic			
	(C)	ionic		van der Waals			
Q.3	Burning of phosphorus in the presence of air produces a highly hygroscopic white compound, which reacts with water to yield						
	(A)	H ₃ PO ₄	(B)	H ₂ PO ₂			
	(C)	$H_4P_2O_7$	(D)	$H_4P_2O_5$			
Q.4	The minimum uncertainty in the speed of an electron in a one dimensional box of length 10^{-10} m is						
	(A)	580 m/s	(B)	580 km/s			
	(C)	1160 km/s	(D)	5800 km/s			
Q.5	Which one of the following explains the origin of colligative properties correctly?						
	(A)	Increase of the chemical potential of the liquid solvent due to added solute					
	(B)			liquid solvent due to added solute			
	(C)	Influence of the solute on the chemical potential of the solvent vapour					
	(D)	- MAN					
Q.6	For a zero order reaction, $A \rightarrow P$, if the initial concentration of species A is $[A]_0$, then						
	1 1/2 can be expressed as						
	(A)	[A] ₀ /k	·(B)	1/k			
		$2[\Lambda]_0/k$	(D)	[A] ₀ /2k			
Q.7	Which one of the following compounds is most acidie?						
	(A)	Protonated methanol	(B)	Protonated methylamine			
	(C)	Acetic acid	(D)	Methanol			

Q.8	For a compound to be aromatic, how many π electrons must be in the π cloud?						
	(A) (C)	An even number of pairs An even number	(B) (D)	An odd number An odd number of pairs			
Q.9	Which one of the following alkyl halides would be the most stable in water?						
	(A) (C)	Cyclopropenyl bromide Cyclopropyl bromide	(B) (D)	Cyclopentadienyl bromide Bromobenzene			
Q.10	What starting materials must be used in order to have a 1,4-cyclohexadiene to be the product of a Diels Alder reaction?						
	(A) A conjugated diene and an alkene(C) A 1,4-diene and an alkyne		(B) (D)	A conjugated diene and an alkyne A 1,2-diene and an alkyne			
	Q.11 – 30 carry two marks each						
Q.11	The single-bond length between carbon and the elements viz., carbon, nitrogen, oxygen and fluorine follow the order $C-C > C-N > C-O > C-F$. This trend is due to						
	(A) (C)	increase in electronegativity increase in atomic weight	(B) (D)	increase in bond polarity decrease in atomic size			
Q.12	By applying the VSEPR model on the XeF ₄ molecule, which one of the following statements is true?						
	 (A) Has four bonding pairs and a lone pair (B) Has octahedral geometry and square planar shape (C) Has square planar geometry and octahedral shape (D) Has tetrahedral geometry and tetrahedral shape 						
Q.13							
	(A) They are isoelectronic (B) Both are aromatic (C) Both undergo addition reactions (D) Both undergo substitution reactions						
Q.14	The action of NH ₃ on S ₂ Cl ₂ produces a thermochromic crystalline compound, whose chemical formula is						
	(A) (C)	S_3N_3Cl S_2N_2	(B) (D)	S ₄ N ₃ Cl S ₄ N ₄			
Q.15	The oxidation state of Fe and S in Na ₂ [Fe(CO) ₄ Cl ₂] and K ₂ S ₂ O ₈ , respectively are						
	(A)	0 and +5	(B)	+2 and +7			
	(C)	+ 4 and + 5	(D)	0 and +4			
Q.16	The structure of Ni(CO) ₄ is						
	(A)	square planar	(B)	trigonal pyramidal			
	(C)	tetrahedral	(D)	distorted octahedral			

Q.17	The reaction of CuCO ₃ with acetic acid produces a blue crystalline compound with its magnetic moment (μ_{eff}) being ~1.4 B.M./Cu. The compound is						
	(A) (C)	Cu(CH ₃ COO) ₂ •2H ₂ O Cu(CH ₃ COO) ₂	(B) (D)	Cu ₂ CO ₃ (CH ₃ COO) ₂ •2H ₂ O Cu ₂ (CH ₃ COO) ₂ •2H ₂ O			
Q.18	The limiting ionic conductivities of Mg^{2+} and Cl^- in H_2O at 298 K are 10.60 and 7.635 mS m ² mol ⁻¹ , respectively. The limiting molar conductivity (in mS m ² mol ⁻¹) of $MgCl_2$ in H_2O at 298 K is						
	(A) (C)	18.235 28.835	(B) (D)	25.870 60.893			
Q.19	The longest wavelength transition in the Balmer series of atomic hydrogen is						
	(A) (C)	656.5 nm 15233 nm	(B) (D)	6564.7 nm 65647 nm			
Q.20	In a liquid vapour phase boundary, a plot of <i>ln</i> vapour pressure against the reciprocal of temperature would yield as slope						
	(A)	$\Delta_{\rm vap}H/R$	(B)	$-\Delta_{ m vap}H/R$ $\Delta_{ m vap}H/R^2$			
	(C)	$\Delta_{ m vap} H/\Delta_{ m vap} V$	(D)	$\Delta_{\rm vap} H/R^2$			
Q.21	For a first order reaction, $A \rightarrow P$, the time required to complete 80% of the reaction is						
	(A)	In 1.25/k	(B)	In 8/k			
	(C)	In 5/k	(D)	In 80/k			
Q.22	If the molar enthalpy and entropy of fusion of water are 6.01 kJ/mol and 22.0 J/mol K, respectively, the ΔG for the melting of ice at 10 °C is						
	(A)	– 6220 kJ/mol	(B)	214 kJ/mol			
	(C)	– 5.79 kJ/mol	(D)	- 0.22 kJ/mol			
Q.23	When steady state approximation is applied in enzyme kinetics, which one of the following statements is correct with regard to the concentration of the enzyme substrate complex, [ES]						
		d[ES]/dt = 0		d[ES]/dt = constant			
	(C)	[ES] = 0	(D)	d[ES]/dt = infinity			
Q.24	The wavelength possessed by a cricket ball of mass 1 kg, travelling with a velocity of 40 m/s is						
	(A) (C)	1.66 x 10 ⁻³⁸ m 2.65 x 10 ⁻³² m	(B) (D)	1.66 x 10 ⁻⁵⁵ m 1.66 x 10 ⁵³ m			
Q.25	Which one of the following reaction sequences will convert toluene to para-chlorobenzoic acid?						
	(A) (i) Cl ₂ /light, (ii) hot KMnO ₄ /H ⁺ (B) (i) Hot KMnO ₄ /H ⁺ , (ii) Cl ₂ /FeCl ₃ (C) (i) Cl ₂ /FeCl ₃ , (ii) hot KMnO ₄ /H ⁺ (D) (i) N-Chlorosuccinimide, (ii) hot KMnO ₄ /H ⁺						

- Q.26 For 2,3-dibromobutane, which one of the following statement is true?
 - (A) (2S, 3S) and (2R, 3S) is a pair of diastereomers; (2R, 3R) and (2S, 3S) is a pair of enantiomers
 - (B) (2S, 3S) and (2R, 3S) is a pair of diastereomers; (2R, 3S) and (2S, 3R) is a pair of enantiomers
 - (C) (2R, 3R) and (2S, 3S) is a pair of diastereomers; (2S, 3S) and (2R, 3S) is a pair of enantiomers
 - (D) (2R, 3R) and (2S, 3S) is a pair of diastereomers; (2R, 3R) and (2S, 3S) is a pair of enantiomers
- Q.27 When trans-1-bromo-2-methylcyclohexane reacts with methoxide ion, what products are formed under S_N2 and S_N1 conditions?
 - (A) S_N2 and S_N1 both form cis and trans-1-methoxy-2-methylcyclohexane
 - (B) S_N2 forms cis-1-methoxy-2-methylcyclohexane, and S_N1 forms cis and trans-1-methoxy-2-methylcyclohexane
 - (C) S_N2 forms cis-1-methoxy-2-methylcyclohexane, and S_N1 forms 1-methoxy-1-methylcyclohexane
 - (D) S_N2 forms cis-1-methoxy-2-methylcyclohexane, and S_N1 forms trans-1-methoxy-2-methylcyclohexane
- Q.28 What product(s) is (are) formed when HBr is eliminated from (2S, 3S)-2-bromo-3-phenylbutane in an E2 reaction?
 - (A) (Z)-2-phenyl-2-butene
 - (B) (Z) and (E)-2-phenyl-2-butene
 - (C) (E)-2-phenyl-2-butene
 - (D) (E)-3-methyl-3-phenyl-1-butene
- Q.29 The major product that would be formed in a Diels Alder reaction between (E)-penta-1,3-diene (trans-1-methyl-1,3-butadiene) and methyl acrylate is
 - (A) 1,2-product (ortho) with Me and CO₂Me cis to each other
 - (B) 1,2-product (ortho) with Me and CO₂Me trans to each other
 - (C) 1,3-product (meta) with Me and CO₂Me cis to each other
 - (D) 1,3-product (meta) with Me and CO₂Me trans to each other
- Q.30 How many resonance structure contributors can be written for the carbocation intermediate formed when phenol undergoes electrophilic substitution in the ortho, meta, and para positions?
 - (A) ortho:3, meta:3 and para:4 (B) ortho:3, meta:3 and para:3
 - (C) ortho:4, meta:3 and para:4 (D) ortho:3, meta:4 and para:3

End of Section I

Please visit: www.easybiologyclass.com for:

- Lecture Notes
- Biology PPTs
- Biology MCQs
- Online Mock Tests (MCQ)
- Video Tutorials
- Practical Aids
- ➤ Model Question Papers of NET, GATE, DBT, ICMR Exams
- ➤ CSIR NET Life Sciences Previous Year Question Papers
- GATE Previous Year Question Papers
- ➤ DBT BET JRF Previous Year Question Papers
- ➤ ICMR JRF Entrance Exam Resources
- Jobs Notifications
- ➤ Higher Studies in Biology / Life Sciences
- Seminar / Workshop/ Conference Notifications
- ➤ And many more....

Please subscribe our **youtube** channel: **easybiologyclass** https://www.youtube.com/user/easybiologyclass/videos

You can access more PDFs & PPTs from our **Slideshare** account http://www.slideshare.net/EasyBiologyClassEBC/

