Kerala SET Exam, 2010

BOTANY

(Original Solved Question Paper)

10036

120 MINUTES

1.	 In Wheat and rice A) Pericarp is fused with seed coat B) Fruits are multi seeded C) Perisperm is fused with seed coat D) Seed coat and pericarp are separate 	Ans. A
2.	In gymnosperms, the endosperm isA)PolyploidB)HapC)TriploidD)Diploid	
3.	 'Gamma garden' is used for A) Growing plantlets produced by tissue cult B) Eradicating pathogen from infected plants C) Growing genetically engineered plants on D) Mutation breeding for crop improvement. 	Ans. D
4.	, 1 ,	of oil palm? hamus tinctorius Ans. C os nucifera
5.	The solute most abundant in phloem sap isA)Amino AcidsB)SugaC)HormonesD)Mino	ar erals Ans. B
6.	The metal component of Nitrogenase enzyme isA)ManganeseB)MolC)CopperD)Zinc	ybdenum Ans. B
7.	, , , , , , , , , , , , , , , , , , , ,	y by chance and the effect of eur effect Ans. C lane effect
8.		oid and sporophytic Ans. A oid and gametophytic
9.	, , , , , , , , , , , , , , , , , , , ,	rnaria etorichum Ans. D
10.	, 5	e known as osomes ysomes Ans. A

11.	Glycol	lysis and TCA Cycle operate i	n		
	A)	Photorespiration	B)	β-oxidation	D
	C)	α-oxidation	D)	Dark respiration	
12.	'Senna	a' is obtained from the plant			
12.	A)	Cassia fistula	B)	Cassia alata	
	C)	Cassia angustifolia	D)	Cassia tora	С
	,	-	2)		
13.	`Iris m				
	A)	Chondrus	B)	Hydrodictyon	Α
	C)	Funaria	D)	Sphagnum	1
14.	One of	f the following trees is endemi	c to Ind	lia	
	A)	Tectona grandis	B)	Artocarpus integrifolia	_
	Ċ	Ficus religiosa	D)	Azadirachta indica	С
	<i>,</i>	-	,		
15.		light of potato is caused by			
	A)	Alternaria solani	B)	Phytophthora infestans	В
	C)	Pseudomonas solanacearum	D)	Albugo bliti	
16.	The or	nly plant hormone that is not tr	ansloca	ted from the cells producing it	
	A)	Auxin	B)	Ethylene	
	C)	Cytokinin	D)	Gibberellic acid	В
	/	·			
17.	-	thes thaliana, a rare endangered	-	-	
	A)	Madhya Pradesh	B)	Meghalaya	
	C)	Himachal Pradesh	D)	Andhra Pradesh	В
18.	One cl	nambered dry dehiscent fruit th	nat dehi	sces along both the sutures is	
101	A)	Siliqua	B)	Follicle	D
	Ċ	Capsule	D)	Legume	D
	,		,	5	
19.				ich are used in the treatment of	
		atism, inflammation and skin			
	A)	Curcuma amada	B)	Rauwolfia serpentina	D
	C)	Cinchona officinalis	D)	Withania somnifera	
20.	The se	even volumes of the "Flora of l	British I	India "was compiled by	
	A)	William Hooker	B)	J. D. Hooker	В
	C)	Bentham	D)	Gamble	
21.	The us	se of gamma rays from a cobal	t source	e for control of microorganisms in fo	od
21.	A)	Radiation	B)	Radappertization	0 u
	C)	Radurzation	D)	Ionization	
	~)		-)		В
22.	Botani	ical name of finger millet is			
	A)	Poinsettum americanum	B)	Paspalum scorbiculatum	
	Ć	Setaria italica	D)	Eleucine coracana	D
	-				

23.	-	production of fruits without fer			
	A)	Parthenogenesis	B)	Apomixis	С
	C)	Parthenocarpy	D)	Pseudocarpy	
24.	The f	amily Lamiaceae is characteri	zed by t		
	A)	Scorpiod cyme	B)	Helicoid cyme	C
	C)	Verticellaster	D)	Cyathium	
25.	Whic man	h of the following trait shows	mendeli	an inheritance as a dominant gene in	
	A)	Presence of dimples	B)	Colour blindness	Α
	C)	Both	D)	None	
26.	Elato	rs and pseudoelators in the cap	sules of	^c bryophyte are meant for	
_0.	A)	Nutrient absorption	B)	Water conduction	
	C)	Spore dispersal	D)	Mechanical support	С
27.	In Sn	nilax tendrils are			
	A)	Modified stipules	B)	Modified leaf	
	Ć	Modified petiole	D)	Modified leaflet	Α
28.		s with intervening sequences			
	A)	Introns	B)	Split genes	
	C)	Exons	D)	Pseudo genes	В
29.	A res	earch technique to modify a ge	ene in a	predetermined way	
	A)	Site directed mutagensis	B)	Cloning	
	C)	rDNA technique	D)	Western blotting	Α
30.	In eul	karyotes the ribosomal RNA g	enes are	transcribed by	
	A)	Reverse transcriptase	B)	RNA dependent RNA polymerase	
	C)	RNA polymerase 1	D)	RNA polymerase 2	С
31.	Flora	l formula of Hibicus rosasinen	sis is		
	A)	$O \stackrel{\frown}{\rightarrow} Epi K_{6-8} K_{(5)}C_5 A_{(\infty)}G_5$	B)	$O \stackrel{\bigcirc}{\to} Epi_{(5)}K_{(5)}C_5A_{(\infty)}G(\underline{_{5-\infty)}}$	
	C)	$O \stackrel{\bigcirc}{=} Epi_{3}K_{(5)}C_{5}A_{(\infty)}G_{\underline{5}}$	D)	$O \stackrel{\circ}{\downarrow} Epi K_3 K_{(5)}C_3 A_{(\infty)}G_{\infty}$	Α
32.	Vege	tative propagating part of Suga	arcane is	scalled	
	A)	Suckers	B)	Setts	
	C)	Scion	D)	All of the above	В
33.	Antib	oody diversity is generated by			
	A)	Protein splicing	B)	Somatic recombination	D
	C)	Mutation	D)	Allelic exclusion	D
34.	Exam	ple of an aggregate fruit			
	A)	Pine apple	B)	Custard apple	
	Ć	Apple	D)	Orange	В
	/	**	,	~	

35.	FAST	A program was first described	l by		D
	A)	Adach & Hasegawa	B)	Lipman & Pearson	В
	C)	Kyte and Dolittle	D)	Fitch & Margoliash	
36.		portant feature of the genetic of host is its	code wł	nich allows the expression of a pr	rotein
	A)	Degeneracy	B)	Universality	
	C)	Redundancy	D)	Triplet nature.	A
	C)	Reduitedancy	D)	Implet hature.	
37.	Muller	's CIB method was used to de	etect		
57.	A)	Sex linked mutation			
	B)	Sex linked lethal mutations			В
	Ć	Autosomal dominant mutation	on		D
	D)	Autosomal recessive mutation			
38.	Gynos	tegium relates to			
50.	A)	Fusion of stamens with gync	ecium		
	B)	Fusion of stamens with stign		SC	Α
	C)	Fusion of gynoecium with an			
	D)	Fusion of gynoecium with fi			
39.	Venke	traman Ramakrishnan has got	Nobel	Prize for the detailed mapping of	f
57.	A)	Small subunit of ribosome fr			L
	B)			some of Geobacillus tearothermo	nhilus A
	C)	Large ribosomal subunit of F			piiiius.
	D)	Small subunit of ribosome of			
40.	The tr	ansgenic plant which is develo	ned by	anit-sense RNA technology	
40.	A)	Golden rice	B)	Bt cotton	С
	C)	Flavr Savr tomato	D)	Both A and C	Ŭ
	0)	Tiavi Savi tomato	D)	Doth A and C	
41.		-	carried t	o the female by means of water	
	curren A)	Fucus	B)	Polysiphonia	
	C)	Chara	D)	Vaucheria	В
	0)	Chara	D)	vauenena	
42.	X-ray	scattering from an atom depen	nds on t		
	A)	Electrons	B)	Protons	Α
	C)	Neutrons	D)	All of these	11
43.	The m	ost famous X-helix polypeptic	de secoi	ndary structure is	
	A)	Left handed	B)	Circular	6
	C)	Right handed	D)	Branched	С
44.	RNA -	- DNA hybrid always adopt A	form b	ecause of	
	A)	Steric hindrance of – OH gro			
	B)	Steric hindrance of – OH gro	1		
	C)	Coiling of the molecule			Α
	D)	Presence of Uracil base in R	NA		

45.	Chlorella will fulfill the need of all vitamins exceptA)Ascorbic acidB)BiotinC)Plamitic acidD)Pathonic acid	Α
46.	Which of the experiment is suitable to detect linkage?A) aaBB x aaBBB)AaBb x aabbC)AABB x aabbD)AAbb x AaBB	В
47.	 According to Rodley & Sasi Sekharan model, DNA is A) Right handed B) Left handed C) Alternating right and left handed helix D) None of these. 	c
48.	Which plant is efficient converter of solar energy?A)WheatB)SugarcaneC)RiceD)Banana	В
49.	The plant hormone used to induce parthenocarpyA)GibberellinsB)CytokininsC)AuxinsD)Ethylene	А
50.	Quaternary structure of protein describes.A)Conformational organization B)C)Amino acid sequenceD)None of these.	A
51.	Who among the following is known as father of biostatisticsA)Francis GaltonB)Adolphe QuesteC)NeymanD)William Gosset	A
52.	Which one is used for comparison between two or more variablesA)Pie chartB)Bar diagramC)Line diagramD)All of these	В
53.	The feeding of avidin may result in a deficiency ofA)RiboflavinB)Vitamin B12C)Vitamin AD)Biotin	D
54.	A fatty acid not synthesized in man isA)Oleic acidB)Stearic acidC)Linoleic acidD)Palmitic acid	С
55.	 Genomic imprinting is A) Expression of genes depend on its paternal or maternal inheritance B) Expression of genes linked with X chromosomes C) Expression of genes linked with Y chromosomes D) Expression of extrachromosomal genes 	А

	A)	otrogen is needed Produce root ca		B)	Protect root tip			
	C)	Abosorb water		D)	None of the ab	ove		Α
57.	Ribos	switches are						
	A)	Short RNA seq	uences th	nat change	their conformation	n on binding	with s	mall
		molecules						
	B)	Short RNA seq						A
	C)	Short RNA mo						
	D)	Short RNA seq	uences u		ΠΠΚΙΝΑ			
58.	The (D ₂ dissociation co	urse of h	emoglobin	is shifted to right	by		
	A)	Decreased CO ₂		B)	Increased pH		С	2
	C)	Increased CO ₂	tension	D)	Increased N ₂ te	ension	C	•
59.		many genetically type of AaBbccDl		t gametes c	an be made from	an individua	l of	
	A)	51	B) 32	2	C) 10	D)	5	Α
60.	What	a company of the	- haataria		are attacked by p	mailling?		
00.	A)	component of the Peptidoglycan	e Dacterra	B)	Teichoic acid	encinins?		
	C)	Teichuronic aci	b	D)	Lipopolysaccha	aride		Α
61.		hter of a colour b				s a colour bl	ind per	son.
		the trait will expr	ess amon	o their chi	dren')			
	A \	CO 0/ 1	50 0/ 1					
	A) D)	50 % sons and	50 % dau					
	B)	All sons only						А
	B) C)	All sons only All daughters o	nly					A
	B)	All sons only	nly					А
62.	B) C) D) How	All sons only All daughters o All sons and Da many triplet codo	nly aughters	ighters		s A, U, G an	d C	Α
62.	B) C) D) How conta	All sons only All daughters o All sons and Da many triplet codo ining no uracils?	nly aughters ons can be	ighters e made froi	n four nucleotide			
62.	B) C) D) How	All sons only All daughters o All sons and Da many triplet codo ining no uracils?	nly aughters	ighters e made froi		s A, U, G an D)	d C 6	A A
62. 63.	B) C) D) How conta A)	All sons only All daughters o All sons and Da many triplet code ining no uracils? 27	nly aughters ons can bo B) 64	ighters e made froi 4	n four nucleotide C) 37	D)	6	
	B) C) D) How conta A)	All sons only All daughters o All sons and Da many triplet codo ining no uracils?	nly aughters ons can bo B) 64	ighters e made froi 4	n four nucleotide C) 37	D) ation in bact	6	
	 B) C) D) How conta A) Whice 	All sons only All daughters o All sons and Da many triplet codo ining no uracils? 27	nly aughters ons can bo B) 64	ighters e made froi 4 method of	n four nucleotide C) 37 genetic recombin	D) ation in bact	6	
63.	 B) C) D) How conta A) White A) C) 	All sons only All daughters o All sons and Da many triplet codo ining no uracils? 27 h of the following Translocation Conjugation	nly aughters ons can bo B) 64 g is not a	e made from 4 method of B)	n four nucleotide C) 37 genetic recombin Transformatior	D) ation in bact	6	Α
	 B) C) D) How conta A) White A) C) Albin 	All sons only All daughters o All sons and Da many triplet codo ining no uracils? 27 h of the following Translocation Conjugation	nly aughters ons can bo B) 64 g is not a	e made from 4 method of B) D)	n four nucleotide C) 37 genetic recombin Transformatior Transduction	D) ation in bact	6	Α
63.	 B) C) D) How conta A) White A) C) 	All sons only All daughters o All sons and Da many triplet codo ining no uracils? 27 h of the following Translocation Conjugation tism is due to lack Tyrosinase	nly aughters ons can bo B) 64 g is not a	e made from 4 method of B) D) B)	n four nucleotide C) 37 genetic recombin Transformation Transduction Phenylalanine	D) ation in bact 1 hydroxylase	6	A A
63. 64.	 B) C) D) How conta A) White A) C) 	All sons only All daughters o All sons and Da many triplet codo ining no uracils? 27 h of the following Translocation Conjugation hism is due to lack Tyrosinase Kynureninase	nly aughters ons can bo B) 64 g is not a	e made from 4 method of B) D) B) D)	n four nucleotide: C) 37 genetic recombin Transformation Transduction Phenylalanine Homogentisica	D) ation in bact 1 hydroxylase	6	Α
63.	 B) C) D) How conta A) Whice A) C) Albine A) C) Whice 	All sons only All daughters o All sons and Da many triplet codo ining no uracils? 27 h of the following Translocation Conjugation tism is due to lack Tyrosinase Kynureninase h of these is a per	nly aughters ons can bo B) 64 g is not a c of	e made from 4 method of B) D) B) D) uride sugar?	n four nucleotides C) 37 genetic recombin Transformation Transduction Phenylalanine Homogentisica	D) ation in bact hydroxylase se	6 eria?	A A A
63. 64.	 B) C) D) How conta A) White A) C) 	All sons only All daughters o All sons and Da many triplet codo ining no uracils? 27 h of the following Translocation Conjugation tism is due to lack Tyrosinase Kynureninase h of these is a per	nly aughters ons can bo B) 64 g is not a c of	e made from 4 method of B) D) B) D)	n four nucleotide: C) 37 genetic recombin Transformation Transduction Phenylalanine Homogentisica	D) ation in bact hydroxylase se	6	A A A
63.64.65.	 B) C) D) How conta A) Whice A) C) Albir A) C) Whice A) 	All sons only All daughters o All sons and Da many triplet codo ining no uracils? 27 h of the following Translocation Conjugation iism is due to lack Tyrosinase Kynureninase h of these is a per Verbascose	nly aughters ons can bo B) 64 g is not a c of ntasaccha B) R	e made from 4 method of B) D) B) D) aride sugar?	n four nucleotide: C) 37 genetic recombin Transformation Transduction Phenylalanine I Homogentisica C) Stachyo	D) ation in bact hydroxylase se ose D)	6 eria?	A A A
63. 64.	 B) C) D) How conta A) Whice A) C) Albin A) C) Whice A) C) Whice A) C) 	All sons only All daughters o All sons and Da many triplet codo ining no uracils? 27 h of the following Translocation Conjugation tism is due to lack Tyrosinase Kynureninase h of these is a per Verbascose	nly aughters ons can bo B) 64 g is not a c of ntasaccha B) R	e made from 4 method of B) D) wride sugar? affinose with highe	n four nucleotides C) 37 genetic recombin Transformation Transduction Phenylalanine Homogentisica C) Stachyco st cholesterol con	D) ation in bact hydroxylase se ose D)	6 eria?	A A A eose
63.64.65.	 B) C) D) How conta A) Whice A) C) Albir A) C) Whice A) 	All sons only All daughters o All sons and Da many triplet codo ining no uracils? 27 h of the following Translocation Conjugation iism is due to lack Tyrosinase Kynureninase h of these is a per Verbascose	nly aughters ons can bo B) 64 g is not a c of ntasaccha B) R	e made from 4 method of B) D) B) D) aride sugar?	n four nucleotide: C) 37 genetic recombin Transformation Transduction Phenylalanine I Homogentisica C) Stachyo	D) ation in bact hydroxylase se ose D)	6 eria?	A A A ecose

67.	Which antiox	•	g is the import	ant reac	tive group of glutathion	e in its role	e as
	A)	Serine		B)	Sulf hydryl		В
	C)	Acetyl CoA		D)	Carboxyl		D
68.	Bell-s	haped normal dis	stribution curv	e inheri	itance is an example of		
	A)	Complementar		B)	Qualitative inheritance		
	C)	Polygenic traits	3	D)	Pleiotropy		C
69.		stance between l ments are measu	•	-	ermined from interrupte	ed conjugat	ion
	A)	Recombination		B)	Micrometer		С
	C)	Minutes		D)	Percentage of genophg	ore	
70.	The fin A)	rst attempt to sho Oenothera lama		plants w B)	vas carried out in Pisum sativum		
	C)	Lathyrus odora		D)	Zea mays		D
71.	In prei	natal diagnosis, t	he polymorph	ism use	d to determine genetic o	lisorders	
	A)	SNPs	B) RFLPs		C) RAPDs	D) SCA	ARs A
72.	A Dru	g resistance mar	ker used for se	election	of recombinants is		
/ 2.	A)	•	B) SSP			D) AFI	LP A
73.		icine induces pol					
	A)	Inhibiting cell of		B)	Promoting cell division		С
	C)	Inhibiting spine	the formation	D)	Doubling the Chromos	ome size	C
74.	Which A) B)	type DNA is fo Single stranded Single stranded	and circular	nages?			
	C) D)	Double strande Double strande					A
75.	The re	gions of gene wl	hich do not for	rm part	of functional mRNA are	e called	
	A)	Transposons		B)	Cistrons		С
	C)	Introns		D)	Exons		C
76.	Overla	apping genes					
	A)	Are characteris	tics to eukaryo	otes			
	B)				quences in Protein		
	C)	Are split genes			-		D
	D)	Means that a ge	ene can code f	or more	than one polypeptide		2
77.		one of the follo tage in wheat.	wing carries d	warf ge	ne with high protein and	d lysine	
	A)	Lerma safed		B)	Kalyan		C
	C)	Sharbati sonara	l	D)	Sonalika		С
	,			,			

78.	Which is the most short -lived RNA A) sRNA B) rRNA		C) tRNA D)	mRNA D
79.	The DNA sequence cut by Eco RI i A) GCAT /GCAT C) GAATTC/CTTAAG	s B) D)	GAATTC/GAATTC GAATTG/CTTTAAC	С
80.	In Z-DNA, helix pitch is A) 60 A^0 B) 34 A^0)	C) 20 A ⁰ D)	45A ⁰
81.	Triticale has been evolved by hybriA) Rice and MaizeC) Wheat and rye	dizatior B) D)	n between Wheat and rice Ragi and Maize	С
82.	During translation phase of protein and termination involveA) Protein factors and AMPC) Protein factors and GTP	synthes B) D)	sis, process of initiation, elong Protein factors and CAMP Glycoxylation.	ation C
83.	Shuffling of gene from one locationA) MutonsC) Exons	n to ano B) D)	ther is possible. Such genes an Recons Transposons	re called D
84.	Andrew Fire and Craig Mello got A) PCR C) RNA interference	Nobel B) D)	Prize in Medicine for Protein Sequencing GFP	С
85.	The holandric genes are located onA) PolyteneC) X- Chromosome	B) D)	Y- chromosome Mitochondria	В
86.	Mutagenic agents causing frame shA) 2-Amino purineC) Bromouracil	ift muta B) D)	ation are EMS Acridine dye	В
87.	 Kornberg with Ochoa received Not A) Mechanism of biological sy B) Co linearity hypothesis C) Central Dogma D) Artificial Synthesis of prote 	nthesis		А
88.	The Hybrid variety cotton obtained Gossypium hirsutum is A) Godhavari C) Savitri	by cros B) D)	ssing two different strains of Varalaxmi Jayalaxmi	Α
89.	BSI is located at A) Lucknow B) Myso	ore	C) Kolkatta D)	Kerala C

90.	-	ta required for synthesis are	r assimila	tion of	one mo	lecule	of CO ₂ /O ₂ li	iberation in		_
	A)	2	B)	8		C)	6	D)	4	В
91.	Conti	nuous variatio	ons are at	tributed	to meio	osis thr	ough			
2 - •	A)	Polyploidy			B)		sing over			
	C)	Mutation			D)	All o	f these			В
92.	Oligo	genes are								
	A)	Quantitative	e genes		B)	Qual	itative genes	5		
	C)	Holandrinc	genes		D)	Epist	atic genes			В
93.	The c	ommon bread	l wheat is							
	A)	Allotetraplo			B)		nexaploid			
	C)	Auto teraple	oid		D)	Diplo	oid			В
94.		Polymerase e	•							
	A)	Monocistro	-		B)		cistronic onl	У		
	C)	Monocistro	nic & Pol	lycistroi	nic D)	Not a	a protein			С
95.	Whic	h sub unit of r	ribosome	is attacl	hed to E	ER?				
	A)	50S	B)	60S		C)	30S	D)	40S	
96.	Unidi	rectional repl	ication ta	kes plac	e in					В
	A)	Coliphage F			B)		erichia			
	C)	Pneumococ	cus		D)	Salm	onella			Α
97.	Whic	h phrase is no				-	•			
	A)	It is a practi								
	B)	Backcross b the transger		is repeat	ted until	l the of	fspring has	99+% elite	genes	and C
	C)	Backcross b		is a new	technic	que dev	veloped for	genetically		
	,	engineered	plants							
	D)	Backcross b	preeding i	is often	used to	reduce	yield drag			
98.	Whic	h of the follow	ving occu	urs in th	e spora	ngia of	mosses?			
	A)	Spores gern		-						С
	B)	Sperm cells		uced in	rows ju	st bene	eath the surf	ace of the		
	(antheridiop			4					
	C)	Sporocytes The zygote	•		-	-				
	D)	The zygote	uevelops	into a i	nuncei		noryo			
99.		ervation hotsp								
	A)	Areas with rapidly	large nun	nbers of	endem	ic spec	ies that are	disappearin	g	
	B)	Areas where	e people a	are parti	icularly	active	supporters of	of biologica	al dive	ersity A
	C)	Islands that								
	D)	Areas where	e native s	pecies a	are bein	g repla	ced with int	roduced sp	ecies	

100.	Whic	h bacteria causes food po	isoning					
	A)	Escherichia	B)	Penicillium	C			
	C)	Salmonella	D)	Candida	С			
101.	Whic	h of the following statem	ents about N	Iarchantia sporophytes is true?				
101.	A)			the foot without the developmen	tofo			
	A)	seta.		the foot without the development	1 01 a			
	D)		n the energy of	f the mature consule	C			
	B)	An operculum forms of The sporophyte hange		he underside of the archegoniun				
	C)	None of the above	uowii iioiii t	ne underside of the archegomun	1.			
	D)	None of the above						
102.	When	n a specific epithet exactly	y repeats the	generic name it is known as				
	A)	Neotype	B)	Priority	D			
	C)	Taxa	D)	Tautonym				
103.	The s	seed known by the name '	Chilgoza' t	hat is used as a dry fruit				
1001	A)	Zamia	B)	Pinus gerardiana	В			
	C)	Cedrus deodara	D)	Cycas racemosa				
	0)		D)	e yeus rucentosa				
104.	Quan	titative PCR is						
	A)	Real time PCR	B)	RT PCR				
	C)	Inverse PCR	D)	Multiplex PCR	Α			
105.	Perce	entage frequency distribut	ion is repres	ented by				
	A)	Frequency polygon	B)	Ogive representation				
	Ć	Pie diagram	D)	Frequency table	С			
106.	Mode	e can be located graphical	ly with the k	eln of				
100.	A)	Line diagram	B)	Bar				
	C)	Histogram	D)	Pie diagram	С			
	C)	mstogram	D)	i le ulagrafii	C			
107.	The f	first artificial plant hybrid	was made b	У				
	A)	Thomas Fairchild	B)	De Viries				
	C)	Borlaug	D)	M.S.Swaminathan	Α			
108.	Somatic embryogenesis is:							
1001	A)	Germ line cells develop	oing into em	bryos				
	B)	Non-germ line cells de	-	•				
	C)	Embryos developing fr			В			
	D)	Embryonic tissue becom		c				
109.		Cl gradient will separate 1	DNA moleo	ules hv				
107.	ACS A)	Absorption	BNA III0ICCI B)	Resorption				
	C)	Density	D)	Adhesion	С			
	0)	Density	D)					
110.	Klen	ow fragment without free	nucleotides	exhibits				
	A)	Exonuclease activity	B)	Endonuclease activity				
	C)	Nickase activity	D)	No activity	Α			

111.	A)	winding of the double helix of Topoisomerase Restriction endoclease	B)	prior to replication is carried out b Helicase All of A, B and C	у
	C)	Restriction endocrease	D)	All of A, B and C	В
112.	The no A)	on sister chromatids twist aroun Leptotene	nd and (B)	exchange segments with each othe Pachytene	r in
	C)	Zygotene	D)	Diplotene	в
113.	Line W	Veaver – Burk plot helps to fin	d out		
	A)	Rate of enzyme action	B)	Competitive inhibitor	
	C)	Substrate composition	D)	Group specificity	В
114.	Amylo	plastids are plastids which sto	re		
	A)	Proteins	B)	Lipids	
	C)	Starch	D)	Ergastic substances	С
115.	When	lactose is present			
	A)	1	le to bir	nd the operator and transcription tu	irned
	B)			ator and transcription turned off	
	C)	The regulator protein is unable off	le to bir	nd the operator and transcription tu	irned
	D)		ne opera	ntor and transcription turned on	A
116.	Which	one of the following trees yie	ld gum		
	A)	Pinus	B)	Acacia	
	C)	Eucalyptus	D)	Phyllanthus	В
117.	Which	amino acid is precursor of eth	vlene n	roduction	
	A)	Alanine	B)	Threonine	
	C)	Methionine	D)	Serine	С
118.	Jute is				
110.	A)	Corchorus capsularis	B)	Crotalaria juncea	
	C)	Ceiba pentadra	D)	Calamus rotundus	А
119.	Poson	wood balange to the family			
119.	A)	vood belongs to the family Leguminosae	B)	Verbenaceae	
	C)	Liliaceae	D)	Cruciferae	Α
	,				
120.	-	nal placentation and monocarp			
	A)	Poaceae	B)	Asteraceae	_
	C)	Fabaceae	D)	Liliaceae	С

.....